簡易檢索 / 詳目顯示

研究生: 柯名駿
Ming-Jun Ke
論文名稱: Fe-15 Mn-9 Al與Fe-30 Mn-9 Al合金鋼之spinodal相分離研究
The Study of Spinodal Decompositions in Fe-15 Mn-9 Al and Fe-30 Mn-9 Al Steels
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 王朝正
Chaur-Jeng Wang
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 122
中文關鍵詞: 鐵錳鋁碳合金spinodal相分離序化反應魏德曼組織D03L12
外文關鍵詞: Fe-Mn-Al-C alloy, spinodal decomposition, ordering reaction, Widmanstätten structure, D03, L12
相關次數: 點閱:227下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鐵錳鋁碳合金被視為能代替鉻鎳系不鏽鋼之經濟鋼種,有「窮人的不鏽鋼」之美譽。本論文研究Fe-30 Mn-9 Al-0.12 C (合金A)與Fe-15 Mn-9 Al-0.15C (合金B),以1300℃與1200℃進行持溫30分鐘的高溫處理。當溫度於1300℃的時候,合金為單相肥粒體,而溫度於1200℃的時候,則為雙相結構,並可在晶界析出物(GBAs)上觀察到具雙晶的沃斯田體晶粒。以空冷方式降溫,兩合金皆可觀察到魏德曼組織(Wid.)自GBAs生成,且合金B的Wid.少於合金A;而以水淬冷卻的試片則都可見針狀麻田散體。其後對空冷試片進行穿透式電子顯微鏡分析,於Wid.中,僅於合金B可觀察到L12相析出物,並可於面掃描成分分析觀察到鋁與碳都有相互吸引的叢聚現象,推測在序化生成L12相之前有spinodal相分離發生;另可於合金A與B的肥粒體基地中觀察到D03相析出物,以面掃描成分分析,也可觀察到鋁元素有相互吸引的叢聚現象,亦可推測有spinodal相分離發生於序化生成D03相之前。故可得於Wid.中的相變化式:Wid. (γ) → Wid. (γ′ + γ′′) → Wid. (γ′ + L12),以及於肥粒體基地中的相變化:α → α′ + α′′ → α′ + D03。


Fe-Mn-Al-C alloy was regarded as an economical steel that can replace Cr-Ni stainless steel, and has the reputation of "the poor man's stainless steel". The thesis studies Fe-30 Mn-9 Al-0.12 C (alloy A) and Fe-15 Mn-9 Al-0.15C (alloy B). The high temperature treatment was carried out at 1300℃ and 1200℃ for 30 minutes. When the temperature is 1300℃, the alloy is a single-phase ferrite, and when the temperature is 1200℃, it has a dual-phase structure, and twin-crystal austenitic crystals can be observed on the grain boundary allotriomorphic (GBAs). The Widmanstätten structure (Wid.) formed from GBAs can be observed in both alloys by air cooling, and the Wid. of alloy B is less than that of alloy A; while the specimens cooled by water quenching can be observed acicular martensite. Then analysis the AC samples by TEM. For both of them, the precipitation of D03 phase could be observed in the BCC matrix, and the precipitation of L12 phase in alloy B could only be observed in the Wid.. Used STEM for mapping analysis, the clustering of aluminum could be observed in the surface scanning in BCC matrix, and the clustering of aluminum and carbon could be observed in Wid.. Thus, it could be speculated that the spinodal decomposition occurred before the ordering reaction, and known that the phase transformation formula is: Wid. (γ) → Wid. (γ′ + γ′′) → Wid. (γ′ + L12) and α → α′ + α′′ → α′ + D03.

摘 要 III Abstract IV 誌 謝 V 目 錄 VI 表目錄 VII 圖目錄 VIII 第一章 簡 介 1 1.1 研究動機 1 1.2 研究目的 3 第二章 文獻回顧 4 2.1 相變化種類簡介 4 2.2 鐵錳鋁合金相變化之研究 8 第三章 實驗方法 19 3.1 鐵錳鋁碳合金熔鑄 19 3.2 鑄錠加工 20 3.3 熱處理 20 3.4 試片製備流程 21 3.5 分析儀器 24 第四章 結果與討論 34 4.1 合金A與合金B高溫處理之金相組織 34 4.2 合金A之低溫處理之金相 37 4.3 合金A與合金B之L12 析出物 39 4.4 合金A與合金B之D03析出物 42 第五章 結 論 101 參考文獻 103

[1] R.A. Hadfield, Process of making steel containing carbon, manganese, and aluminum (Patent US422403), 1890.
[2] J. Charles and A. Berghezan, Nickel-free austenitic steels for cryogenic applications: The Fe-23 % Mn-5 % Al-0.2 % C alloys, Cryogenics, 1981, 21(5), 278-280.
[3] M. Cavallini, F. Felli, R. Fratesi and F. Veniaii, Aqueous solution corrosion behavior of “poor man” high manganese-aluminum steels, Materials and Corrosion, 1982, 33(5), 281-284.
[4] J.G. Duh and C.J. Wang, Formation and growth morphology of oxidation-induced ferrite layer in Fe-Mn-Al-Cr-C alloys, Journal of Materials Science, 1990, 25, 2063-2070.
[5] 李文彬,雙相鐵錳鋁碳合金麻田散鐵相變化研究,博士論文,1994,國立清華大學材料科學(工程)研究所,新竹市。
[6] X.J. Liu, S.M. Hao, L.Y. Xu, Y.F. Guo and H. Chen, Experimental study of the phase equilibria in the Fe-Mn-Al system, Metallurgical and Materials Transactions A, 1996, 27, 2429-2435.
[7] W.C. Cheng, H.Y. Lin and C.F. Liu, Observing the massive transformation in an Fe-Mn-Al alloy, Materials Science and Engineering: A, 2002, 335(1-2), 82-88.
[8] H.Y. Chu, F.R. Chen and T.B. Wu, Structural evolution of the aging of martensite in duplex Fe-Mn-Al-C alloy, Scripta Metallurgica et Materialia, 1995, 33(8), 1269-1275.
[9] W.B. Lee, F.R. Chen, S.K. Chen, G.B. Olson and C.M. Wan, Transmission electron microscopy studies of the crystallography of B.C.C./18R martensite in Fe-Mn-Al-C, Acta Metallurgica et Materialia, 1995, 43(1), 21-30.
[10] W.C. Cheng, C.F. Liu and Y.F. Lai, The role carbon plays in the martensitic phase transformation of an Fe-Mn-Al alloy, Scripta Materialia, 2003, 48(3), 295-300.
[11] K.H. Hwang, C.M. Wan and J.G. Byrne, Phase transformation in a duplex Fe-Mn-Al-C alloy, Materials Science and Engineering: A, 1991, 132, 161-169.
[12] W.C. Cheng and H.Y. Lin, The formation of austenite annealing twins from the ferrite phase during aging in an Fe-Mn-Al alloy, Materials Science and Engineering: A, 2003, 341(1-2), 106-111.
[13] O.A. Zambrano, A general perspective of Fe-Mn-Al-C steels, Journal of Materials Science, 2018, 53(1), 14003-14062.
[14] W.C. Cheng, C.F. Liu and Y.F. Lai, Observing the D03 phase in Fe-Mn-Al alloys, Materials Science and Engineering: A, 2002, 337(1-2), 281-286.
[15] W.C. Cheng, Formation of a new phase after high-temperature annealing and air cooling of an Fe-Mn-Al alloy, Metallurgical and Materials Transactions A, 2005, 36, 1737-1743.
[16] 黃志偉,魏德曼組織發生spinodal相分離與序化反應的研究,碩士論文,2017,國立台灣科技大學機械工程系,台北市。
[17] 林中天,經高溫冷卻雙相鐵錳鋁合金鋼內肥粒體與沃斯田體發生spinodal相分離的研究,碩士論文,2017,國立台灣科技大學機械工程系,台北市。
[18] J.C.F. Tolédano, Phase transformations, mathematical aspects of, Encyclopedia of Condensed Matter Physics, 2005, 258-263.
[19] D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase transformations in metals and alloys, 3rd ed., CRC press.
[20] W.A. Soffa and D.E. Laughlin, High-strength age hardening copper-titanium alloys: redivivus. Progress in Materials Science, 2004, 49(3-4), 347-366.
[21] J.W. Cahn, On spinodal decomposition. Acta Metallurgica, 1961, 9(9), 795-801.
[22] W.C. Cheng, C.Y. Cheng, C.W. Hsu and D.E. Laughlin, Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe-Mn-Al austenitic steel. Materials Science and Engineering: A, 2015, 642, 128-135.
[23] Y.U. Heo, A Strategy for phase identification of precipitates in high Al-containing austenitic and ferritic steels using electron diffraction. Applied Microscopy, 2014, 44(4), 144-149.
[24] W.A. Soffa and D.E. Laughlin, Decomposition and ordering processes involving thermodynamically first-order order → disorder transformations, Acta Metallurgica, 1989, 37(11), 3019-3028.
[25] Z. Nishiyama, Martensitic transformation, 1979, Academic Press, 1st ed..
[26] 林郁珊,以方位影像顯微學(OIM與ASTAR)分析鐵錳鋁合金內沃斯田體晶粒的麻田散體相變化,碩士論文,2014,國立台灣科技大學機械工程系,台北市。
[27] W. Köster and W. Tonn, Die eisenecke des systems eisen-mangan-aluminium. archiv für das eisenhüttenwesen, 1933, 7(6), 365-366.
[28] D.J. Schmatz, Formation of beta manganese type structure in iron-aluminum-manganese alloys, Transactions of the American Institute of Mining and Metallurgical Engineers, 1959, 215, 112-114.
[29] D.J. Chakrabarti, Phase stability in ternary systems of transition elements with aluminum, Metallurgical Transactions B, 1977, 8(1), 121-123.
[30] A. Inoue, T. Minemura, A. Kitamura and T. Masumoto, Nonequilibrium phases in rapidly quenched Fe-Al-C ternary alloys, Metallurgical Transactions A, 1981, 12, 1041-1046.
[31] T.F. Liu and C.M. Wan, α-Mn structure in a Fe-Al-Mn-Cr alloy. Scripta Metallurgica, 1985, 19(6), 727-732.
[32] T.F. Liu and C.M. Wan, D03 structure in a Fe-Al-Mn-Cr alloy. Scripta Metallurgica, 1985, 19(7), 805-810.
[33] D.S. Rasouli, K. Asl, A. Akbarzadeh and G.H. Daneshi, Effect of cooling rate on the microstructure and mechanical properties of microalloyed forging steel, Journal of Materials Processing Technology, 2008, 206(1-3), 92-98.
[34] G.R. Purdy, Widmanstätten structures. Encyclopedia of Materials: Science and Technology, 2001, 2nd ed., 9575-9578.
[35] W.C. Cheng and H.Y. Lin, The formation of austenite annealing twins from the ferrite phase during aging in an Fe-Mn-Al alloy. Materials Science and Engineering: A, 2003, 341(1-2), 106-111.
[36] W.C. Cheng and H.Y. Lin, The precipitation of FCC phase from BCC matrix in an Fe-Mn-Al alloy, Materials Science and Engineering: A, 2002, 323(1-2), 462-466.
[37] P.J. James, Precipitation of the carbide (Fe,Mn)3AlC in an Fe-Al Alloy. Journal of Iron and Steel Institute, 1969, 207, 54-57.
[38] J. Emo, and P. Maugis, Atomic mean-field model of E21 ordering in γ-iron-aluminium-carbon alloys. Journal of Alloys and Compounds, 2017, 696, 1120-1128.
[39] L. Yang, F. Huang, Z. Guo, Y. Rong and N. Chen, Investigation on the formation mechanism of ordered carbide (Fe,Mn)3AlC in the Al added twinning-induced plasticity steels, Journal of Shanghai Jiaotong University (Science), 2016, 21(4), 406-410.
[40] Y.L. Lin and C.P. Chou, D03-B2-α phase transition in an Fe-Mn-Al-C weldment, Scripta Metallurgica et Materialia, 1993, 28(10), 1261-1266.
[41] 劉增豐,鐵-9.1鋁-29.9錳-2.9鉻合金相變化,博士論文,1985,國立清華大學材料科學工程研究所,新竹市。
[42] 李昆弦,低碳鐵錳鋁合金鋼之D03 spinodal相分離研究,碩士論文,2016,國立台灣科技大學機械工程系,台北市。
[43] W.B. Lee, Fu-Rong Chen, S.K. Chen, G.B. Olso and C.M. Wan, Transmission electron microscopy studies of the crystallography of B.C.C./18R martensite in Fe-Mn-Al-C, Acta Metallurgica et Materialia, 1995, 43(1), 21-30.
[44] Cheng-Hu Chao and New-Jin Ho, On the interpretation of the crystal structure of the 18R martensite in duplex Fe-Mn-Al-C alloys, Scripta Metallurgica et Materialia, 1992, 26(12), 1863-1868.
[45] S. Shuja, B.S. Yilbas and S.Z. Shazli, Laser repetitive pulse heating influence of pulse duty on temperature rise, Heat and Mass Transfer, 2007, 43(9), 949-955.
[46] 簡紹羽,鐵-29錳-9鋁-0.1碳合金鋼之相變化研究,碩士論文,2016,國立台灣科技大學機械工程系,台北市。
[47] S.M. Allen and J.W. Cahn, Coherent and incoherent equilibria in iron-rich iron-aluminum alloys, Acta Metallurgica, 1975, 23(9), 1017-1026.

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE