簡易檢索 / 詳目顯示

研究生: 吳宜臻
Yi-Chen Wu
論文名稱: 奈米銀與澱粉酶對於抗菌的協同作用
Synergistic effect of nanosilver and amylase on antibacterial
指導教授: 蔡伸隆
SHEN-LONG TSAI
口試委員: 李振綱
Cheng-Kang Lee
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 75
中文關鍵詞: 澱粉酶奈米銀銀結合肽
外文關鍵詞: Amylase, Nanosilver, Silver binding peptide
相關次數: 點閱:148下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


目錄 摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 2 1.3研究內容 2 第二章 文獻回顧 4 2.1奈米銀 4 2.2生物膜 7 2.2.1生物膜形成 7 2.2.2抗生物膜方法 10 2.3澱粉酶 12 第三章 實驗方法 14 3.1實驗藥品與儀器 14 3.1.1實驗藥品 14 3.1.2生物製劑及套組 16 3.1.3儀器設備 17 3.1.4菌種與質體 19 3.1.5引子組 19 3-2實驗方法 21 3.2.1基因轉殖技術 21 3.2.2奈米銀製備 37 3.2.3分析方法 38 第四章 結果與討論 48 4.1質體建構 48 4.1.1 pET24a-Amylase質體建構 48 4.1.2 pET24a-Amylase-AG4質體建構 50 4.2奈米銀合成 53 4.3分析方法 54 4.3.1 Amylase與AG4蛋白表達 54 4.3.2 Amylase與Amylase-AG4活性分析 56 4.3.3生物膜測試 57 4.3.4抗菌測試 58 第五章 結論 63 文獻參考 64   圖目錄 圖1-1本研究內容設計 3 圖2-1化學法合成奈米銀 4 圖2-2奈米銀抗菌作用 6 圖2-3生物膜形成 9 圖2-4 EPS作為抗生物膜劑的作用位點 11 圖2-5 α-amylase結構 12 圖3-1以ImageJ繪製膠圖之峰圖 42 圖3-2 Bradford assay檢量線 44 圖3-3還原醣檢量線 45 圖4-1澱粉酶基因片段(含intron) 48 圖4-2 new pET24a-Amylase質體圖 49 圖4-3 new pET24a-Amylase質體的酶切反應確認膠圖 49 圖4-4 Colony PCR pET24a-Amylase-AG4膠圖 51 圖4-5 pET24a-Amylase-AG4質體的酶切反應確認膠圖 51 圖4-6 new pET24a-Amylase-AG4質體圖 52 圖4-7 new pET24a-Amylase-AG4質體的酶切反應確認膠圖 52 圖4-8奈米銀 53 圖4-9 SDS-PAGE膠圖 55 圖4-10活性測試 56 圖4-11結晶紫染色後的生物膜 57 圖4-12不同比例的奈米銀及澱粉酶處理後的菌落數 59 圖4-13不同比例的奈米銀及澱粉酶處理後的抗菌率 60 圖4-14相同奈米銀添加量下與不同濃度澱粉酶處理後的抗菌率 62  表目錄 表2-1奈米銀合成法比較 5 表2-2 α-amylase生產的微生物來源 13 表3-1實驗藥品及資訊 14 表3-2實驗生物製劑及套組清單 16 表3-3實驗儀器清單 17 表3-4菌種與質體的來源或基因體 19 表3-5本研究使用之引子 19 表3-6 PCR藥品配置 25 表3-7 PCR操作條件 26 表3-8 RT-PCR藥品配置 27 表3-9 RT-PCR操作條件 27 表3-10酶切法反應溶液 30 表3-11核酸接合反應溶液 31 表3-12 SDS-PAGE膠體配方 39 表3-13 10 x running buffer配方 39 表3-14 5 x sample buffer配方 40 表3-15 BSA標準品配置 43 表3-16菌液連續十倍稀釋條件 47

1. Kapoor, G., S. Saigal, and A.J.J.o.a. Elongavan, clinical pharmacology, Action and resistance mechanisms of antibiotics: A guide for clinicians. 2017. 33(3): p. 300.
2. Hsueh, P.-R.J.J.o.t.F.M.A., New Delhi metallo-β-lactamase-1 (NDM-1): an emerging threat among Enterobacteriaceae. 2010. 109(10): p. 685-687.
3. Hellinger, W.C.J.S.M.J., Confronting the problem of increasing antibiotic resistance. 2000. 93(9): p. 842-848.
4. Sondi, I., B.J.J.o.c. Salopek-Sondi, and i. science, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. 2004. 275(1): p. 177-182.
5. Jones, N., et al., Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. 2008. 279(1): p. 71-76.
6. Martínez-Castañon, G.-A., et al., Synthesis and antibacterial activity of silver nanoparticles with different sizes. 2008. 10(8): p. 1343-1348.
7. Sanpui, P., et al., The antibacterial properties of a novel chitosan–Ag-nanoparticle composite. 2008. 124(2): p. 142-146.
8. Gong, P., et al., Preparation and antibacterial activity of Fe3O4@ Ag nanoparticles. 2007. 18(28): p. 285604.
9. Kim, Y.H., et al., Synthesis and characterization of antibacterial Ag− SiO2 nanocomposite. 2007. 111(9): p. 3629-3635.
10. Lestari, E., et al., Antimicrobial resistance among Staphylococcus aureus and Escherichia coli isolates in the Indonesian population inside and outside hospitals. 2004. 10.
11. Nanosilver, E., State of the Science Literature Review: Everything Nanosilver and More.
12. Monteiro, D.R., et al., The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. 2009. 34(2): p. 103-110.
13. Ge, L., et al., Nanosilver particles in medical applications: synthesis, performance, and toxicity. 2014. 9: p. 2399.
14. Li, S., et al., Green synthesis of silver nanoparticles using Capsicum annuum L. extract. 2007. 9(8): p. 852-858.
15. Yin, I.X., et al., The antibacterial mechanism of silver nanoparticles and its application in dentistry. 2020. 15: p. 2555.
16. AshaRani, P., et al., Cytotoxicity and genotoxicity of silver nanoparticles in human cells. 2009. 3(2): p. 279-290.
17. Choi, O., et al., The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. 2008. 42(12): p. 3066-3074.
18. Durán, N., et al., Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments. 2016. 100(15): p. 6555-6570.
19. Holt, K.B. and A.J.J.B. Bard, Interaction of silver (I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. 2005. 44(39): p. 13214-13223.
20. Nel, A., et al., Toxic potential of materials at the nanolevel. 2006. 311(5761): p. 622-627.
21. Amro, N.A., et al., High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. 2000. 16(6): p. 2789-2796.
22. Morones, J.R., et al., The bactericidal effect of silver nanoparticles. 2005. 16(10): p. 2346.
23. Pal, S., et al., Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. 2007. 73(6): p. 1712-1720.
24. Flemming, H.-C. and J.J.N.r.m. Wingender, The biofilm matrix. 2010. 8(9): p. 623-633.
25. Simoes, M., M.O. Pereira, and M.J.J.W.R. Vieira, Effect of mechanical stress on biofilms challenged by different chemicals. 2005. 39(20): p. 5142-5152.
26. Zea, L., et al., Potential biofilm control strategies for extended spaceflight missions. 2020. 2: p. 100026.
27. Dunne Jr, W.M.J.C.m.r., Bacterial adhesion: seen any good biofilms lately? 2002. 15(2): p. 155-166.
28. Donlan, R.M.J.E.i.d., Biofilms: microbial life on surfaces. 2002. 8(9): p. 881.
29. Fletcher, M., G.J.A. Loeb, and e. microbiology, Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. 1979. 37(1): p. 67-72.
30. Pringle, J.H., M.J.A. Fletcher, and E. Microbiology, Influence of substratum wettability on attachment of freshwater bacteria to solid surfaces. 1983. 45(3): p. 811-817.
31. Bendinger, B., et al., Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. 1993. 59(11): p. 3973-3977.
32. Sauer, F.G., et al., Bacterial pili: molecular mechanisms of pathogenesis. 2000. 3(1): p. 65-72.
33. Connell, I., et al., Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. 1996. 93(18): p. 9827-9832.
34. Beloin, C., A. Roux, and J.-M.J.B.b. Ghigo, Escherichia coli biofilms. 2008: p. 249-289.
35. Ghigo, J.-M.J.N., Natural conjugative plasmids induce bacterial biofilm development. 2001. 412(6845): p. 442-445.
36. Renner, L.D. and D.B.J.M.b. Weibel, Physicochemical regulation of biofilm formation. 2011. 36(5): p. 347-355.
37. Brading, M.G., J. Jass, and H.M.J.M.B. Lappin-Scott, Dynamics of bacterial biofilm. 2003. 5: p. 46.
38. Pirrone, M., R. Pinciroli, and L.J.C.o.i.i.d. Berra, Microbiome, biofilms, and pneumonia in the ICU. 2016. 29(2): p. 160-166.
39. Sperling, O., et al., Evaluation of the carbohydrate recognition domain of the bacterial adhesin FimH: design, synthesis and binding properties of mannoside ligands. 2006. 4(21): p. 3913-3922.
40. Klein, T., et al., FimH antagonists for the oral treatment of urinary tract infections: from design and synthesis to in vitro and in vivo evaluation. 2010. 53(24): p. 8627-8641.
41. Wellens, A., et al., Intervening with urinary tract infections using anti-adhesives based on the crystal structure of the FimH–oligomannose-3 complex. 2008. 3(4): p. e2040.
42. Andersson, E.K., et al., Modulation of curli assembly and pellicle biofilm formation by chemical and protein chaperones. 2013. 20(10): p. 1245-1254.
43. Chibeu, A., et al., Bacteriophages with the ability to degrade uropathogenic Escherichia coli biofilms. 2012. 4(4): p. 471-487.
44. Lee, J.-H., et al., Ginkgolic acids and Ginkgo biloba extract inhibit Escherichia coli O157: H7 and Staphylococcus aureus biofilm formation. 2014. 174: p. 47-55.
45. Diggikar, R.S., et al., Silver-decorated orthorhombic nanotubes of lithium vanadium oxide: an impeder of bacterial growth and biofilm. 2013. 97(18): p. 8283-8290.
46. Salem, W., et al., Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. 2015. 305(1): p. 85-95.
47. Lahiri, D., et al., Amylases: biofilm inducer or biofilm inhibitor? 2021. 11.
48. Avwioroko, O.J., et al., Isolation, identification and in silico analysis of alpha-amylase gene of Aspergillus niger strain CSA35 obtained from cassava undergoing spoilage. 2018. 14: p. 35-42.
49. Van Der Maarel, M.J., et al., Properties and applications of starch-converting enzymes of the α-amylase family. 2002. 94(2): p. 137-155.
50. Souza, P.M.d. and P.d.O.J.B.j.o.m. Magalhães, Application of microbial α-amylase in industry-A review. 2010. 41: p. 850-861.
51. Far, B.E., et al., Microbial alpha-amylase production: progress, challenges and perspectives. 2020. 10(3): p. 350.
52. Kalpana, B.J., et al., Antibiofilm activity of α-amylase from Bacillus subtilis S8-18 against biofilm forming human bacterial pathogens. 2012. 167(6): p. 1778-1794.
53. Wiatr, C.L., Application of multiple enzyme blend to control industrial slime on equipment surfaces. 1991, Google Patents.
54. Standards, N.C.f.C.L. and A.L. Barry, Methods for determining bactericidal activity of antimicrobial agents: approved guideline. Vol. 19. 1999: National Committee for Clinical Laboratory Standards Wayne, PA.

無法下載圖示 全文公開日期 2031/09/03 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE