簡易檢索 / 詳目顯示

研究生: 蔡惠羽
Hui-Yu Tsai
論文名稱: 冷拌再生乳化瀝青混凝土抗開裂性質分析
Evaluation of Cracking Resistance for Recycled Cold-Mix Emulsified Asphalt
指導教授: 廖敏志
Min-Chih Liao
口試委員: 陳建旭
Chien-Hsu Chen
林彥宇
Yen-Yu Lin
陳君弢
Chun-Tao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 62
中文關鍵詞: 乳化瀝青再生瀝青混凝土冷拌再生混合料IDEAL-CT乳化瀝青混凝土
外文關鍵詞: Emulsified Asphalt, Recycled Asphalt Concrete, Cold Recycled Mixture, IDEAL-CT, Emulsified Asphalt Recycled Concrete
相關次數: 點閱:189下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

台灣隨著經濟成長,交通量與日俱增,瀝青鋪面需要翻新與修復,同時也產生許多瀝青混凝土刨除料(RAP, Reclaimed Asphalt Pavement),衍生許多環保與工程管理等議題,近幾年,政府對於環境問題越來越重視,朝著淨零排放目標邁進,在眾多的技術中,冷拌再生乳化瀝青混合料(Recycled Cold-Mix Emulsified Asphalt)在拌和的過程中不需要額外加熱,可以大幅降低二氧化碳對空氣與環境之污染及危害,亦不會有瀝青加熱老化的問題;另以刨除料取代新鮮粒料可降低其囤積空間,達到資源有效再利用的目標,係為一種經濟且環保的技術,因此積極發展冷拌再生乳化瀝青混凝土之技術研究具有重要的意義。然而,冷拌乳化瀝青混凝土之配比設計與拌合方法至今未有通用的標準程序,過去的文獻對於冷拌乳化瀝青混合物之設計法都有不同的建議,在試驗方法亦無一定的標準,另由於冷拌瀝青混凝土的抗張能力可能無法與熱拌瀝青混凝土相當,且目前國內尚未有冷拌再生乳化瀝青混凝土抗開裂性質等鋪面績效相關研究,因此本研究擬採用IDEAL-CT (Indirect Tensile Asphalt Cracking Test)評估冷拌再生乳化瀝青混凝土之抗開裂性質。本研究依據不同的標稱最大粒徑、殘餘乳化瀝青含量及RAP含量之IDEAL-CT試驗結果,評估上述三者變因對於冷拌再生乳化瀝青混合物抗裂之影響,並進一步分析間接張力強度(IDT)、工作能數值(Wf)及最大載重75%時之點斜率絕對值(m75)與抗開裂指數(CTindex)之間關係。試驗結果顯示,當冷拌再生乳化瀝青混凝土之殘餘瀝青含量越高,會提升混合物的抗疲勞開裂性能,然而,同時會降低混合物抗張強度的表現;對比熱拌瀝青混凝土(Hot-Mix Asphalt, HMA),即便殘餘瀝青含量增加,抗開裂性能之表現仍較HMA差,係因為乳化瀝青於養護的過程,水份會蒸發而產生空隙,進而降低CTindex,透過各參數對於CTindex之綜合影響分析結果顯示,Wf與CTindex相關性較低,而m75與CTindex相關性則較高。


As the economic growth in Taiwan, heavy traffic together with high loadings has become a critical issue for road management, resulting in more frequent pavement rehabilitation than before. Due to the rehabilitation process, more RAP (Reclaimed Asphalt Pavement) are generated, leading to the environmental problems regarding energy consumption, carbon dioxide emission and landfill disposal. With many green paving technologies or materials, CMAE (Cold-Mix Asphalt Emulsion) is one of the solutions because it can be produced and laid at ambient temperatures without consuming too much fuel and energy. There also does not exist short-term ageing issue compared to conventional hot-mix asphalt. Additionally, it is also known that the addition of RAP with proper amount to asphalt concrete can reduce the process of virgin aggregate extraction. However, concern is raised with the fact that there is no universal procedure for the design of CMAE and the performance associated with cracking resistance for the CMAE is also not well understood. In this study, the IDEAL-CT (Indirect Tensile Asphalt Cracking Test) was conducted to assess the cracking resistance of CMAE with different NMAS(Nominal Maximum Aggregate Size), residual emulsified asphalt content and RAP content. Further analyses included establishment the correlations of indirect tensile strength (IDT), work energy (Wf), absolute value of the post-peak slope(m75) and cracking tolerance index (CTindex). Test results show that high residual asphalt content increases the cracking resistance of the CMAE, but a reduction in IDT is observed. The resistance to cracking of the CMAE is lower than that of the HMA due to the higher voids content of CMAE. The higher void content of CMAE is appeared because of water evaporation, thereby reducing the CTindex. It also can be concluded that the m75 has a significant effect on the CTindex of the CMAE.

摘要 I ABSTRACT II 謝誌 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3研究目的 3 1.4研究範圍 3 第二章 文獻回顧 4 2.1乳化瀝青材料 4 2.1.1乳化劑分類 4 2.1.2乳化瀝青成分 5 2.1.3乳化瀝青混合料配比設計 8 2.2冷拌再生乳化瀝青混凝土 9 2.2.1配比設計 9 2.2.2壓實與養護 11 2.3間接張力開裂試驗(IDEAL-CT) 12 第三章 研究計畫 15 3.1研究流程 15 3.2試驗材料 17 3.3試驗方法 21 3.3.1試體製備程序 21 3.3.2間接張力開裂試驗 24 第四章 結果與分析 25 4.1材料基本性質 25 4.1.1瀝青刨除料(RAP)之粒料篩分析 25 4.1.2新鮮粒料性質及篩分析 25 4.2配比設計方法 27 4.2.1熱拌瀝青混凝土配比設計(參考組) 27 4.2.2冷拌乳化瀝青混凝土配比設計(控制組) 30 4.2.3冷拌再生乳化瀝青混凝土配比設計(對照組) 31 4.3殘餘瀝青含量及RAP含量對混合物抗開裂性質之影響 36 4.3.1抗開裂指數(CTindex) 36 4.3.2間接張力強度(IDT) 37 4.3.3最大載重75%時之點斜率絕對值(m75) 38 4.3.4工作能數值(Wf) 39 4.2.5破壞能數值(Gf) 40 4.4標稱最大粒徑對混合物抗開裂性質之影響 41 4.4.1抗開裂指數(CTindex) 41 4.4.2間接張力強度(IDT) 42 4.4.3最大載重75%時之點斜率絕對值(m75) 43 4.4.4工作能數值(Wf) 44 4.4.5破壞能數值(Gf) 45 4.5 RAP含量對抗開裂試驗各參數綜合影響 46 4.5.1間接張力強度(IDT)–抗開裂指數(CTindex)之綜合影響 46 4.5.2工作能數值(Wf)–抗開裂指數(CTindex)之綜合影響 47 4.5.3斜率m75–抗開裂指數(CTindex)之綜合影響 48 第五章 結論與建議 50 5.1結論 50 5.2建議 51 參考文獻 52

公共工程委員會,(2019),「瀝青混凝土鋪面」,施工綱要規範第02742章,行政院。
公共工程委員會,(2017),「再生瀝青混凝土鋪面」,施工綱要規範第02966章,行政院。
交通部公路總局材料試驗所,(2021),「瀝青混凝土抵抗疲勞裂縫之耐久性研究及規範研擬」,期中報告(第三期),新北市。
Asphalt Institute. (2008). ”A Basic Asphalt Emulsion Manual,” Manual Series No.19, 4th Edition, Asphalt Institute, Lexington, KY, USA.
Flores, G., Gallego, J., Miranda, L. and Marcobal, J. R. (2020). ”Cold asphalt mix with emulsion and 100% RAP: Compaction energy and influence of emulsion and cement content,” Construction and Building Materials, Vol. 250, 118804.
Graziani, A., Iafelice, C., Raschia, S., Perraton, D. and Carter, A. (2018). ”A procedure for characterizing the curing process of cold recycled bitumen emulsion mixtures,” Construction and Building Materials, Vol. 173, pp.754-762.
Liu, Q., Wang, C., Zhang, Z., Du, C., Liu, P and Oeser, M.(2021).” Influence of preparation methods on the performance of cold-mixed epoxy bitumen,” Materials and Structures, Vol. 54(74), pp.1-13
Yan, J., Leng, Z., Li, F., Zhu, H. and Bao, S.(2017). ”Early-age strength and long-term performance of asphalt emulsion cold recycled mixes with various cement contents,” Construction and Building Materials, Vol. 137, pp.153-159.
Yang ,W., Ouyang, J., Meng, Y., Han B. and Sha, Y.(2021).” Effect of curing and compaction on volumetric and mechanical properties of cold-recycled mixture with asphalt emulsion under different cement contents,” Construction and Building Materials, Vol. 297, 123699.
Zhou, F. (2019). “Development of an IDEAL Cracking Test for asphalt mix design, Quality Control and Quality Assurance,” Final Report, NCHRP IDEA Project 195, Transportation Research Board, National Academy Press, Washington D.C.
Zhou, F., Im, S., Sun, L., & Scullion, T. (2017). “Development of an IDEAL cracking test for asphalt mix design and QC/QA,” Road Materials and Pavement Design, 18(sup4), 405-427. doi:10.1080/14680629.2017.1389082

QR CODE