簡易檢索 / 詳目顯示

研究生: 何亮
Liang He
論文名稱: 無陽極鋰金屬電池中關於固態電解質介面生成的第一原理分子動力學研究:FEC對電解質於Cu3N (111)表面上分解的影響
SEI formation in Anode-Free Lithium Metal Batteries revealed by AIMD Study: Effects of FEC on Electrolyte Decomposition over Cu3N (111) surface
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 郭哲來
Jer-Lai Kuo
黃炳照
Bing-Joe Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 116
中文關鍵詞: 無陽極鋰電池分子動力學氮化銅氟代碳酸乙烯酯電解質分解氮遷移氮化鋰
外文關鍵詞: Anode free lithium batteries, AIMD, Copper nitride(Cu3N), Fluoroethylene carbonate(FEC), Electrolyte Decomposition, N migration, lithium nitride(Li3N)
相關次數: 點閱:288下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

無陽極鋰電池(AFLMBs)具有高理論能量密度、簡單的電池結構、更為低廉的製程成本和更為優良的安全性。然而,其中仍存在一些挑戰,尤其是銅集電器具有不均勻表面且與鋰親和性不足,導致循環壽命不佳、庫倫效率低落、金屬枝狀結晶的生成和不穩定的固態電解質介面(Solid Electrolyte Interface, SEI),造成無陽極鋰電池的電化學性能惡化,最終使其應用受限。目前有許多研究著重於表面的修飾、電解質配方的調整或使用合適的電解質添加劑以改善無陽極鋰電池的電化學性能。根據先前文獻,氮化銅(Cu3N)修飾的銅集電器具有均勻分布的表面,且經過第一次鋰沉積後,氮化銅會被轉化成氮化鋰,進而有效抑制鋰枝狀結晶的生成和穩定SEI的結構。然而,在氮化銅(Cu3N)修飾的銅集電器表面上SEI的生成機制尚不明瞭。因此,在這項研究中,我們使用第一原理分子動力學(AIMD)探討以2M LiPF6、Ethylene Carbonate(EC)、Diethyl Carbonate(DEC)組成的電解質於氮化銅表面上生成SEI的反應性及分解反應機制。此外,我們還分析了添加劑氟代碳酸乙烯酯(Fluoroethylene carbonate, FEC)在SEI生成時所扮演的角色。為了探討在高電流量充電過程中集電器表面帶電後對於SEI生成的影響,我們以過量電子環境進行模擬,並且比較電解質於中性環境和過量電子環境中的還原分解途徑和電荷演化。在中性環境中,氮化銅表面會抑制LiF成分的生成和促進乙烯氣體(C2H4)的生成,令SEI的電子絕緣性變差且可能劣化SEI的結構穩定性。而電解質中加入FEC添加劑後可以增加SEI中LiF的含量,也能夠防止SEI形成時生成氣體。在過量電子環境中,氮原子從氮化銅向鋰層遷移進而生成氮化鋰(Li3N),這有益於提升SEI的導離率。若電解質中加入FEC添加劑後,除了有利於提升SEI中LiF含量之外,更可以加速Li2O和Li3N的生成,進而提升SEI的結構穩定性。最重要的是,可以抑制電解質分解反應時氣體的生成。根據這些理論計算結果,我們預期含有FEC的電解質搭配氮化銅修飾後的銅集電器表面於高速的充電過程,可以提升SEI中LiF、Li2O 和Li3N的含量,進而改善無陽極鋰電池的結構穩定性。


Anode-Free Lithium Metal Batteries (AFLMBs) are gaining popularity due to their high theoretical energy density, simplified structure, lower cost, and improved safety. However, some critical issues, such as poor cycling lifespan, low Coulombic efficiency, notorious metal dendrite growth, and unstable SEI, impede their practical applications. This poor electrochemical performance was caused primarily by the lithiophobic and non-homogeneous surface of the bare copper (bare Cu) current collector. Various strategies for improving the electrochemical performance of AFLMBs have been proposed over the last few decades, including surface modification, electrolyte formulation, and the use of appropriate electrolyte additives. Cu3N-modified Cu collectors have been reported to suppress lithium dendrites and stabilize the SEI, where the Cu3N was converted to a Li3N after initial lithium plating, providing homogeneous electronic conductivity distribution on the electrode surface and improving cycling performance. The precise mechanism of SEI formation on Cu3N-modified Cu surfaces, however, remains unknown. Therefore, in this study, the reactivity of electrolyte consisting of 2M LiPF6, EC, and DEC on the Cu3N surface are investigated using ab initio molecular dynamics (AIMD) simulations. Furthermore, the role of the electrolyte additive FEC on the SEI formation mechanisms is analyzed. To approximate the effects of an electrified surface, an electron-rich environment of the electrolyte on the Cu3N surface is considered. The electrolyte reduction reaction pathways and Bader charges with respect to simulation time for both neutral and excess electron cases are analyzed and compared. In the neutral case, the Cu3N surface inhibited the formation of LiF species and induced the formation of C2H4 gas molecules. Whereas the presence of additive FEC in the electrolyte increased the LiF species in the SEI, preventing undesirable gas molecules from forming on the interface. In electron-rich environments, it is observed that the N atoms from the Cu3N are migrated into Li layers and form Li3N, which can further enhance the ion transport property of the SEI. However, solvent decompositions and the formation of undesirable gas molecules continue to occur during SEI formation in the LiPF6/EC/DEC mixture on the Cu3N surface under electron-rich conditions. The addition of additive FEC to the LiPF6/EC/DEC mixture, on the other hand, increases the abundance of LiF in the SEI film as well as the formation of other major SEI constituents such as Li2O and Li3N and, most importantly, prevents gas formation. Based on these theoretical calculations, it is expected that Cu3N-modified Cu surfaces with FEC-containing electrolytes will increase the LiF, Li2O, and Li3N contents in the SEI film during the high-rate charging process, thereby improving the structural stability of AFLMBs.

Contents Abstract I 摘要 III 致謝 V Contents VI List of Figures VIII List of Tables XIV Chapter 1 Introduction 15 1.1 Lithium Ion Battery (LIB) 15 1.2 Working principle of LIB 15 1.3 Main components of LIB 17 1.3.1 Cathode 17 1.3.2 Anode 18 1.3.3 Electrolyte 19 1.3.3.a Lithium salts 20 1.3.3.b Solvents 21 1.4 Solid Electrolyte Interphase (SEI) 23 1.4.1 Main components of SEI 24 1.5 Lithium Metal Battery (LMB) and Anode-Free LMB (AFLMB) 25 1.5.1 Lithium Metal Battery (LMB) 25 1.5.2 Anode-Free Lithium Metal Battery (AFLMB) 27 1.6 Present study 30 Chapter 2 Theoretical Methodology 32 2.1 DFT calculations 32 2.2 Li-plated Cu, Cu3N surfaces & electrolyte construction 32 2.3 Ab initial molecular dynamic simulation 33 Chapter 3 Effects of Cu3N (111) surface on SEI formation 35 3.1 SEI formation on Cu (111) surface 35 3.1.1 Salt decomposition 36 3.1.2 Solvent decomposition 37 3.1.2.a EC solvent 37 3.1.2.b DEC solvent 40 3.1.3 Elements distribution in SEI 41 3.2 SEI formation on Cu3N (111) surface 44 3.2.1 Cu3N surface lithiation 45 3.2.2 Salt decomposition 49 3.2.3 Solvent decomposition 50 3.2.3.a EC solvent 50 3.2.3.b DEC solvent 53 3.2.4 Elements distribution in SEI 54 Chapter 4 Effect of FEC component on SEI formation over Cu3N surface 59 4.1 SEI formation on Cu3N (111) surface 59 4.1.1 Cu3N surface lithiation 60 4.1.2 Salt decomposition 63 4.1.3 Solvent decomposition 64 4.1.3.a FEC component 64 4.1.3.b EC solvent 67 4.1.4 Elements distribution in SEI 69 Chapter 5 Effects of Excess electrons on SEI formation over Cu3N surface 73 5.1 SEI formation on Cu3N (111) surface 73 5.1.1 Cu3N surface lithiation 74 5.1.2 Salt decomposition 78 5.1.3 Solvent decomposition 79 5.1.3.a EC solvent 79 5.1.3.b DEC solvent 83 5.1.4 Elements distribution in SEI 85 5.2 SEI formation on Cu3N (111) surface with addition of FEC component 89 5.2.1 Cu3N surface lithiation 90 5.2.2 Salt decomposition 94 5.2.3 Solvent decomposition 95 5.2.3.a FEC component 95 5.2.3.b EC solvent 102 5.2.4 Elements distribution in SEI 104 Conclusions 107 References 109

(1) Gitzendanner, R.; Puglia, F.; Martin, C.; Carmen, D.; Jones, E.; Eaves, S. High power and high energy lithium-ion batteries for under-water applications. Journal of power sources 2004, 136 (2), 416-418.
(2) Kojima, T.; Ishizu, T.; Horiba, T.; Yoshikawa, M. Development of lithium-ion battery for fuel cell hybrid electric vehicle application. Journal of Power Sources 2009, 189 (1), 859-863.
(3) Anderson, D. An evaluation of current and future costs for lithium-ion batteries for use in electrified vehicle powertrains. 2009.
(4) Chen, S.; Dai, F.; Cai, M. Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications. ACS energy letters 2020, 5 (10), 3140-3151.
(5) Higashimoto, K.; Homma, H.; Uemura, Y.; Kawai, H.; Saibara, S.; Hironaka, K. Automotive lithium-ion batteries. Hitachi Rev 2011, 60 (1), 17-21.
(6) Bazito, F. F.; Torresi, R. M. Cathodes for lithium ion batteries: the benefits of using nanostructured materials. Journal of the Brazilian Chemical Society 2006, 17, 627-642.
(7) Ohzuku, T.; Brodd, R. J. An overview of positive-electrode materials for advanced lithium-ion batteries. Journal of Power Sources 2007, 174 (2), 449-456.
(8) Schipper, F.; Aurbach, D. A brief review: Past, present and future of lithium ion batteries. Russian Journal of Electrochemistry 2016, 52 (12), 1095-1121.
(9) Nishi, Y. Lithium ion secondary batteries; past 10 years and the future. Journal of Power Sources 2001, 100 (1-2), 101-106.
(10) Shi, H.; Barker, J.; Saidi, M.; Koksbang, R. Structure and lithium intercalation properties of synthetic and natural graphite. Journal of the Electrochemical Society 1996, 143 (11), 3466.
(11) Dahn, J.; Sleigh, A.; Shi, H.; Reimers, J.; Zhong, Q.; Way, B. Dependence of the electrochemical intercalation of lithium in carbons on the crystal structure of the carbon. Electrochimica Acta 1993, 38 (9), 1179-1191.
(12) Kawasaki, S.; Iwai, Y.; Hirose, M. Electrochemical lithium ion storage property of C60 encapsulated single-walled carbon nanotubes. Materials Research Bulletin 2009, 44 (2), 415-417.
(13) Maurin, G.; Bousquet, C.; Henn, F.; Bernier, P.; Almairac, R.; Simon, B. Electrochemical lithium intercalation into multiwall carbon nanotubes: a micro-Raman study. Solid State Ionics 2000, 136, 1295-1299.
(14) Guo, P.; Song, H.; Chen, X. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochemistry Communications 2009, 11 (6), 1320-1324.
(15) Ji, L.; Yao, Y.; Toprakci, O.; Lin, Z.; Liang, Y.; Shi, Q.; Medford, A. J.; Millns, C. R.; Zhang, X. Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. Journal of Power Sources 2010, 195 (7), 2050-2056.
(16) Chang, J.-C.; Tzeng, Y.-F.; Chen, J.-M.; Chiu, H.-T.; Lee, C.-Y. Carbon nanobeads as an anode material on high rate capability lithium ion batteries. Electrochimica Acta 2009, 54 (27), 7066-7070.
(17) Kamali, A. R.; Fray, D. J. Review on carbon and silicon based materials as anode materials for lithium ion batteries. J. New Mater. Electrochem. Syst 2010, 13 (2), 147-160.
(18) Zhao, E.; Gu, Y.; Fang, S.; Yang, L.; Hirano, S.-i. Systematic Investigation of Electrochemical Performances for Lithium-Ion Batteries with Si/Graphite Anodes: Effect of Electrolytes Based on Fluoroethylene Carbonate and Linear Carbonates. ACS Applied Energy Materials 2021, 4 (3), 2419-2429.
(19) Campion, C. L.; Li, W.; Lucht, B. L. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. Journal of The Electrochemical Society 2005, 152 (12), A2327.
(20) Sloop, S. E.; Pugh, J. K.; Wang, S.; Kerr, J.; Kinoshita, K. Chemical reactivity of PF 5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions. Electrochemical and Solid-State Letters 2001, 4 (4), A42.
(21) Zhang, S. S.; Xu, K.; Jow, T. R. Study of LiBF4 as an electrolyte salt for a Li-ion battery. Journal of the Electrochemical Society 2002, 149 (5), A586.
(22) Marom, R.; Haik, O.; Aurbach, D.; Halalay, I. C. Revisiting LiClO4 as an electrolyte for rechargeable lithium-ion batteries. Journal of the Electrochemical Society 2010, 157 (8), A972.
(23) Xu, K.; Zhang, S.; Jow, T. R.; Xu, W.; Angell, C. A. LiBOB as salt for lithium-ion batteries: a possible solution for high temperature operation. Electrochemical and Solid-State Letters 2001, 5 (1), A26.
(24) Kang, S.-J.; Park, K.; Park, S.-H.; Lee, H. Unraveling the role of LiFSI electrolyte in the superior performance of graphite anodes for Li-ion batteries. Electrochimica Acta 2018, 259, 949-954.
(25) Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews 2004, 104 (10), 4303-4418.
(26) Shan, X.; Zhong, Y.; Zhang, L.; Zhang, Y.; Xia, X.; Wang, X.; Tu, J. A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: challenges and perspectives. The Journal of Physical Chemistry C 2021, 125 (35), 19060-19080.
(27) Agubra, V. A.; Fergus, J. W. The formation and stability of the solid electrolyte interface on the graphite anode. Journal of Power Sources 2014, 268, 153-162.
(28) Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Computational Materials 2018, 4 (1), 1-26.
(29) Zeng, X.; Li, M.; Abd El‐Hady, D.; Alshitari, W.; Al‐Bogami, A. S.; Lu, J.; Amine, K. Commercialization of lithium battery technologies for electric vehicles. Advanced Energy Materials 2019, 9 (27), 1900161.
(30) Hannan, M. A.; Hoque, M. M.; Hussain, A.; Yusof, Y.; Ker, P. J. State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations. Ieee Access 2018, 6, 19362-19378.
(31) Lu, Y.; Tu, Z.; Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nature materials 2014, 13 (10), 961-969.
(32) Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nature Energy 2018, 3 (1), 16-21.
(33) Afanasov, I.; Morozov, V.; Kepman, A.; Ionov, S.; Seleznev, A.; Van Tendeloo, G.; Avdeev, V. Preparation, electrical and thermal properties of new exfoliated graphite-based composites. Carbon 2009, 47 (1), 263-270.
(34) Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. Journal of Solid State Electrochemistry 2017, 21 (7), 1939-1964.
(35) Li, Q.; Zhu, S.; Lu, Y. 3D porous Cu current collector/Li‐metal composite anode for stable lithium‐metal batteries. Advanced Functional Materials 2017, 27 (18), 1606422.
(36) Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science 2014, 7 (2), 513-537.
(37) Chen, L.; Fan, X.; Ji, X.; Chen, J.; Hou, S.; Wang, C. High-energy Li metal battery with lithiated host. Joule 2019, 3 (3), 732-744.
(38) Mukhopadhyay, A.; Jangid, M. K. Li metal battery, heal thyself. Science 2018, 359 (6383), 1463-1463.
(39) Heubner, C.; Maletti, S.; Auer, H.; Hüttl, J.; Voigt, K.; Lohrberg, O.; Nikolowski, K.; Partsch, M.; Michaelis, A. From Lithium‐Metal toward Anode‐Free Solid‐State Batteries: Current Developments, Issues, and Challenges. Advanced Functional Materials 2021, 31 (51), 2106608.
(40) Assegie, A. A.; Cheng, J.-H.; Kuo, L.-M.; Su, W.-N.; Hwang, B.-J. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 2018, 10 (13), 6125-6138.
(41) Zhang, J.-G. Anode-less. Nature Energy 2019, 4 (8), 637-638.
(42) Gu, Y.; Xu, H. Y.; Zhang, X. G.; Wang, W. W.; He, J. W.; Tang, S.; Yan, J. W.; Wu, D. Y.; Zheng, M. S.; Dong, Q. F. Lithiophilic faceted Cu (100) surfaces: high utilization of host surface and cavities for lithium metal anodes. Angewandte Chemie International Edition 2019, 58 (10), 3092-3096.
(43) Tong, Z.; Bazri, B.; Hu, S.-F.; Liu, R.-S. Interfacial chemistry in anode-free batteries: challenges and strategies. Journal of Materials Chemistry A 2021, 9 (12), 7396-7406.
(44) Pereira, N.; Dupont, L.; Tarascon, J.; Klein, L.; Amatucci, G. Electrochemistry of Cu3 N with lithium: A complex system with parallel processes. Journal of the Electrochemical Society 2003, 150 (9), A1273.
(45) Li, Q.; Pan, H.; Li, W.; Wang, Y.; Wang, J.; Zheng, J.; Yu, X.; Li, H.; Chen, L. Homogeneous interface conductivity for lithium dendrite-free anode. ACS Energy Letters 2018, 3 (9), 2259-2266.
(46) Lapp, T.; Skaarup, S.; Hooper, A. Ionic conductivity of pure and doped Li3N. Solid State Ionics 1983, 11 (2), 97-103.
(47) Lee, D.; Sun, S.; Kwon, J.; Park, H.; Jang, M.; Park, E.; Son, B.; Jung, Y.; Song, T.; Paik, U. Copper nitride nanowires printed Li with stable cycling for Li metal batteries in carbonate electrolytes. Advanced Materials 2020, 32 (7), 1905573.
(48) Lu, C.; Tian, M.; Zheng, X.; Wei, C.; Rummeli, M. H.; Strasser, P.; Yang, R. Cotton pad derived 3D lithiophilic carbon host for robust Li metal anode: In-situ generated ionic conductive Li3N protective decoration. Chemical Engineering Journal 2022, 430, 132722.
(49) Xu, H.; Li, Y.; Zhou, A.; Wu, N.; Xin, S.; Li, Z.; Goodenough, J. B. Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40° C. Nano letters 2018, 18 (11), 7414-7418.
(50) Park, K.; Goodenough, J. B. Dendrite‐suppressed lithium plating from a liquid electrolyte via wetting of Li3N. Advanced Energy Materials 2017, 7 (19), 1700732.
(51) Tian, Y.; An, Y.; Wei, C.; Jiang, H.; Xiong, S.; Feng, J.; Qian, Y. Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy 2020, 78, 105344.
(52) Liu, L.; Yin, Y. X.; Li, J. Y.; Wang, S. H.; Guo, Y. G.; Wan, L. J. Uniform lithium nucleation/growth induced by lightweight nitrogen‐doped graphitic carbon foams for high‐performance lithium metal anodes. Advanced Materials 2018, 30 (10), 1706216.
(53) Wei, C.; Fei, H.; An, Y.; Tao, Y.; Feng, J.; Qian, Y. Uniform Li deposition by regulating the initial nucleation barrier via a simple liquid-metal coating for a dendrite-free Li–metal anode. Journal of Materials Chemistry A 2019, 7 (32), 18861-18870.
(54) Jiang, A.; Qi, M.; Xiao, J. Preparation, structure, properties, and application of copper nitride (Cu3N) thin films: A review. Journal of materials science & technology 2018, 34 (9), 1467-1473.
(55) Liu, Y.; Lin, D.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. An artificial solid electrolyte interphase with high Li‐ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Advanced Materials 2017, 29 (10), 1605531.
(56) Becke, A. D. Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of chemical physics 1992, 96 (3), 2155-2160.
(57) Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. Gaussian 16, Gaussian. Inc., Wallingford CT 2016, 2016.
(58) Li, Y.; Li, Y.; Pei, A.; Yan, K.; Sun, Y.; Wu, C.-L.; Joubert, L.-M.; Chin, R.; Koh, A. L.; Yu, Y. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 2017, 358 (6362), 506-510.
(59) Kim, K. J.; Kim, J. H.; Kang, J. H. Structural and optical characterization of Cu3N films prepared by reactive RF magnetron sputtering. Journal of Crystal Growth 2001, 222 (4), 767-772.
(60) Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B 1994, 49 (20), 14251.
(61) Blöchl, P. E. Projector augmented-wave method. Physical review B 1994, 50 (24), 17953.
(62) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics 2010, 132 (15), 154104.
(63) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Physical review letters 1996, 77 (18), 3865.
(64) Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science 2006, 36 (3), 354-360. Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter 2009, 21 (8), 084204.
(65) Huo, H.; Chen, Y.; Li, R.; Zhao, N.; Luo, J.; da Silva, J. G. P.; Mücke, R.; Kaghazchi, P.; Guo, X.; Sun, X. Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy & Environmental Science 2020, 13 (1), 127-134.
(66) Young, J.; Kulick, P. M.; Juran, T. R.; Smeu, M. Comparative study of ethylene carbonate-based electrolyte decomposition at Li, Ca, and Al anode interfaces. ACS Applied Energy Materials 2019, 2 (3), 1676-1684.
(67) Xu, C.; Lindgren, F.; Philippe, B.; Gorgoi, M.; Björefors, F.; Edstrom, K.; Gustafsson, T. Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive. Chemistry of Materials 2015, 27 (7), 2591-2599.
(68) Hagos, T. T.; Thirumalraj, B.; Huang, C.-J.; Abrha, L. H.; Hagos, T. M.; Berhe, G. B.; Bezabh, H. K.; Cherng, J.; Chiu, S.-F.; Su, W.-N. Locally concentrated LiPF6 in a carbonate-based electrolyte with fluoroethylene carbonate as a diluent for anode-free lithium metal batteries. ACS applied materials & interfaces 2019, 11 (10), 9955-9963.
(69) Leung, K.; Budzien, J. L. Ab initio molecular dynamics simulations of the initial stages of solid–electrolyte interphase formation on lithium ion battery graphitic anodes. Physical Chemistry Chemical Physics 2010, 12 (25), 6583-6586.
(70) Camacho-Forero, L. E.; Balbuena, P. B. Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode. Physical Chemistry Chemical Physics 2017, 19 (45), 30861-30873.

無法下載圖示 全文公開日期 2024/09/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2042/09/20 (國家圖書館:臺灣博碩士論文系統)
QR CODE