簡易檢索 / 詳目顯示

研究生: 陳威廷
Wei-Ting Chen
論文名稱: 基於壓電片電極配置法之懸臂樑主動抑振控制研究
Active Vibration Control of a Cantilever Beam Using Piezoelectric Electrode Arrangement
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 黃育熙
Yu-Hsi Huang
林仲廉
Jon-Qlan Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 104
中文關鍵詞: 懸臂樑壓電電極配置側向模態彎曲模態控制器切換
外文關鍵詞: electrode segmentation, lateral modal vibration, bending modal vibration, switching con
相關次數: 點閱:163下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

單一壓電致動器在未進行電極切割的模式下驅動時具有較佳的彎曲模態振動效率,而在彎曲模態以外的模態響應抑制效果有限。本研究以壓電電極切割方法使其有效激發/抑致其它較複雜的共振響應並進行懸臂樑主動抑振控制實驗探討。本研究首先利用有限元素法軟體分析懸臂樑應變分佈,並以此決定壓電感測器與致動器合適的設置。根據加入壓電致動器進行應變分析結果,本研究選定懸壁樑側向模態進行壓電電極切割設計,並探討結合第二彎曲模態激振時的多模態主動抑振控制效果。基於高頻振動響應衰減速度較快的物理特性,本研究提出一套新的控制器切換方法分別就彎曲模態與側向模態設計控制器,以便改善控制增益調整效率與整體抑振效能。實驗上首先給予懸臂樑彎曲模態與側向模態激振,再根據頻分析結果決定控制切換時間。壓電電極切換時間選定與控制器切換時間為相同。為了改善控制器切換時產生的顫振現象,本研究使用一平滑切換函數進行控制器切換動作並藉此提升彎曲模態控制效能。本研究針對彎曲模態與側向模態抑振目的進行一系列設計最佳的控制器/電極切換組合與深入探討。實驗結果顯示使用控制器切換方法能提升彎曲模態與側向模態的抑振效能,而加入壓電電極的設計方法可有效抑制側向模態振動響應,同時保留彎曲模態的抑振效果。


Due to its inherent actuation principle, a single piezoelectric actuator has better actuating efficiency at bending modes as well as better vibration suppression for flexible structures, but it may not be suitable for other resonant modes. This thesis presents a novel active vibration control method which combines piezoelectric electrode segmentation and switching control for effective multi-modal vibration suppression control.
In this study, finite element analysis is first conducted to analyze strain distribution of a cantilever beam and determine proper locations for the applied piezoelectric actuator and sensor. Based on a similar finite element analysis which combines the piezoelectric actuator, optimal piezoelectric electrode segmentation is determined to facilitate lateral modal vibration control of the flexible beam. The second bending modal vibration suppression is also considered for multi-modal control. The core idea of the switching control design is based on the fact that high frequency vibration responses decay faster than low frequency vibration responses. By designing the vibration controllers for bending mode and lateral mode individually, this study presents a switching control method in which its switching time is determined through a time-frequency analysis subject to resonant excitation experiments. The switching time for piezoelectric electrode arrangement is same as the controller switching time. To alleviate the chattering phenomena introduced by the switching action, this study applies a smoothing function for switching control. A series of different controller and electrode arrangement configurations are designed for investigation of multi-modal vibration suppression control. Experimental results show that the proposed switching control can suppress both the lateral-mode and bending-mode vibrations effectively. Furthermore, including proper piezoelectric electrode arrangement can achieve improved lateral modal vibration suppression and maintain original effective bending modal vibration suppression at the same time.

第一章 1.1 動機與文獻回顧 1 1.2 本文架構 4 第二章 撓性智慧樑設計 6 2.1 系統材料性質量測 6 2.2 懸臂樑樑動態模型 9 2.3 壓電感測器之架設 12 2.3.1 感測器位置設置 12 2.3.2 感測器之大小選用 14 2.4 壓電電極理論推導與電極切割依據 15 2.4.1 壓電電極切割方程式 16 2.4.2 壓電電極切割依據 22 2.4.3 壓電電極表面切割方法 25 2.5 壓電樑動態響應建立 26 第三章 振動訊號之時頻域分析演算法 30 3.1 快速傅立葉轉換(FAST FOURIER TRANSFORM, FFT) 30 3.2 連續小波轉換 33 第四章 振動控制器設計 38 4.1 正位置迴授控制(POSITIVE POSITION FEEDBACK) 38 4.2 PID控制理論 39 4.2.1 單輸入單輸出PD控制 40 第五章 實驗結果與討論 41 5.1 系統架構 41 5.1.1 實驗硬體設備 41 5.1.2 帶拒濾波器(Notch filter) 43 5.1.3 壓電電極切換架構 44 5.2 開迴路壓電電極切割掃頻實驗 47 5.3 單模態抑振實驗探討 48 5.4 多模態抑振實驗探討 52 5.4.1 標準控制型式 55 5.4.2 切換控制型式 62 5.4.3 加入壓電配置之控制型式 74 5.4.4 最佳控制架構比較與收斂時間分析 81 第六章 結論與未來方向 96 6.1 結論 96 6.2 未來方向 98 參考文獻 99

[1] “原子力顯微鏡探針,” http://hlzzhg.com/YWZt.html
[2] “硬碟讀寫頭,” http://www.earl.com.tw/help-hd.html
[3] K. Uchino, Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic, Boston, 1997).
[4] T. Bailey and J. E. Hubbard, “Distributed piezoelectric-polymer active vibration control of a cantilever beam,” Journal of Guidance, Control, and Dynamics, vol. 8, no. 5, pp. 605-611, 1985.
[5] S. H. Chen, Z. D. Wang, and X. H. Liu, “Active vibration control and suppression for intelligent structures,” Journal of Sound and Vibration, vol. 200, no. 2, pp. 167-177, 1997.
[6] M. Trindadem, A. Benjeddou, and R. Ohayon, “Piezoelectric active vibration control of damped sandwich beams,” Journal of Sound and Vibration, vol. 246, no. 4, pp. 653-677, 2001.
[7] E. Crawley, J.de Luis, “Use of piezoelectric actuators as elements of intelligent structures,” AIAA Journal, vol. 25, no. 10, pp. 1373-1385, 1987.
[8] S. Dong, S. Jinjun, S. Yuxin, Hugh H T Liu, L. Chiming, “Hybrid control of a rotational flexible beam using enhanced PD feedback with a nonlinear differentiator and PZT actuators,” Smart Materials and Structures, vol. 14, no. 1, pp. 69-78, 2005.
[9] J. L. Fanson, T. K. Caughey, “Positive position feedback control for large space structures,”AIAA Journal, vol. 28, no. 4, pp. 717-724, 1987.
[10] A. Preumont, Vibration control of active structures: an introduction, Springer, 2002.
[11] Y. R. Hu, ”Active robust vibration control of flexible structures,” Journal of Sound and Vibration, vol. 288, no.1-2, pp. 43-56, 2005.
[12] J. Wei, Z. Qiu, J. Han and Y. Wangm, “Experimental comparison research on active vibration control for flexible piezoelectric manipulator using fuzzy controller,” Journal of Intelligent and Robotic Systems, vol. 59, no. 1, pp. 31-56, 2010.
[13] D. Symans, W. Kelly, ”Fuzzy logic control of bridge structures using intelligent semi-active seismic isolation systems,” Earthquake Engineering & Structural Dynamic, vol. 28, no. 1, pp. 37-60, 1999.
[14] J. Lin, W. Z. Liu, ”Experimental evaluation of a piezoelectric vibration absorber using a simplified fuzzy controller in a cantilever beam,” Journal of Sound and Vibration, vol. 296, no. 3, pp. 567-582, 2006.
[15] I. Bruant, “Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm,” Journal of Sound and Vibration, vol. 329, no. 10, pp. 1615-1635, 2010.
[16] Z. C. Qiu, “Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate,” Journal of Sound and Vibration, vol. 301, no. 3-5, pp. 521-543, 2007.
[17] K. Rameshkumar, S. Narayanan, “The optimal location of piezoelectric actuators and sensors for vibration control of plates,” Smart Materials and Structures, vol. 16, no. 12, pp. 2680-2691, 2007.
[18] D. Halim, S.O. Reza Moheimani “An optimization approach to optimal placement of collocated piezoelectric actuators and sensors on a thin plate,” Mechatronics, vol. 13, no. 1, pp. 27-47, 2003.
[19] J. Han and I. Lee “Optimal placement of piezoelectric sensors and actuators for vibration control of a composite plate using genetic algorithms,” Smart Materials and Structures, vol. 8, no. 2, pp. 257-267, 1999.
[20] A. M. Sadri, J. R. Wright, and R. J. Wynne, “modelling and optimal placement of piezoelectric actuators in isotropic plates using genetic algorithms,” Smart Materials and Structures, vol. 8, no. 4, pp. 490-498, 1999.
[21] J. Dugundji, and V. Mukhopadhyay, ”Lateral bending-torsion vibrations of a thin beam under parametric excitation,” Journal of Applied Mechanics, vol. 40, no. 3, pp. 693-698, 1973.
[22] C. W. S., ”Vibration of a cantilever beam with a base excitation and tip mass,” Journal of Sound and Vibration, vol. 83, no. 4, pp. 445-460, 1982.
[23] G. R. Liu, X. Q. Peng, K.Y. Lam, and J. Tani, ”Vibration control simulation of laminated composite plates with integrated piezoelectrics,” Journal of Sound and Vibration, vol. 220, no. 5, pp. 827-846, 1999.
[24] E. K. Dimitriadis, C. R. Fuller and C. A. Rogers, ”Piezoelectric actuators for distributed vibration excitation of thin plates,” Journal of Vibration and Acoustics, vol. 113, no. 1, pp. 100-107, 1991.
[25] A. Preumont, J. P. Duforur and C. Malekian, ”Active damping by a local force feedback with piezoelectric actuators,” AIAA Journal of Guidance, Control and Dynamics, vol 15, no 2, pp. 390-395, 1992.
[26] J. Wei, Z. Qiu, J. Han and Y. Wangm, “Experimental comparison research on active vibration control for flexible piezoelectric manipulator using fuzzy controller,” Journal of Intelligent and Robotic Systems, vol. 59, no. 1, pp. 31-56, 2010.
[27] S. O. R. Moheimani and B. J. G. Vautier, “Resonant control of structural vibration using charge-driven piezoelectric actuators,” IEEE Transactions on Control Systems Technology, vol. 13, no. 6, pp. 1021-1035, 2004.
[28] A. G. Wills, D. Bates, A. J. Fleming, B. Ninness, and S. O. R. Moheimani, “Model predictive control applied to constraint handling in active noise and vibration control,” IEEE Transactions on Control Systems Technology, vol. 16, no. 1, pp. 3-12, 2008.
[29] S. Yong, G. Zhiyuan, G. Shouwe, Y. Jincong, and Z. Xiaojin, “FXLMS algorithm based multi channel active vibration control of piezoelectric flexible beam,” World Congress on Intelligent Control and Automation, pp. 4845-4850, 2010.
[30] S. Narayanan, V. Balamurugan, “Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators,” Journal of sound and vibration, vol. 262, no. 3, pp. 529-562, 2003.
[31] X. J. Dong, G. Meng, and J. C. Peng, “Vibration control of piezoelectric smart structures based on system identification technique: numerical simulation and experimental study,” Journal of Sound and Vibration, vol. 297, no. 3-5, pp. 680-693, 2006.
[32] Z. C. Qiu, J. D. Han, “Active vibration control of a flexible beam using a non-collocated acceleration sensor an piezoelectric patch actuator,” Journal of Sound and Vibration, vol. 326, no. 3–5, pp. 438-455, 2009.
[33] M. K. Kwak, S. Heo, “Active vibration control of smart grid structure by multiinput and mulitioutput positive position feedback controller,” journal of Sound and Vibration, vol. 304, no. 1-2, pp. 230-245, 2007.
[34] Kumar, R., Singh, S. P., & Chandrawat, H. N. “MIMO adaptive vibration control of smart structures with quickly varying parameters: Neural networks vs classical control approach,” Journal of Sound and Vibration, vol. 307, no. 3, pp. 639-661, 2007.
[35] A. Krushynska, V. Meleshko, C. C. Ma, and Y. H. Huang, “Mode Excitation Efficiency for Contour Vibrations of Piezoelectric Resonators,” IEEE Transaction on Ultrason. Ferroelectr, and Frequency Control, vol. 58, no. 10, pp. 2222-2238, 2011.
[36] Y. H. Huang, “Electromechanical coupling efficiency of transverse vibration in piezoelectric plates according to electrode configuration,” Journal of the Chinese Institute of Engineers, vol. 36, no. 7, pp.842-855, 2013.
[37] 留志宏,應用超音波量測薄層系統材料常數與量測技術的開發,國立台灣大學機械工程研究所碩士論文,87年6月
[38] S. O. R. Moheimani and A. J. Fleming, Piezoelectric transducers for vibration control and damping Berlin:Springer (2006)
[39] C. C. Ma, K. C. Chuang, and S. Y. Pan, “Polyvinylidene Fluoride Film Sensors in Collocated Feedback Structural Control: Application for Suppressing Impact-Induced Disturbances,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 12, pp. 2539-2554, 2012.
[40] C. K. Lee, W. W. Chiang, and T. C. O'Sullivan. “Piezoelectric Modal Sensors and Actuators Achieving Critical Active Damping on a Cantilever Plate,” Structural Dynamics, and Materials Conference, pp. 2018-2026, 1989.
[41] M. L. James, G. M. Smith, J. C. Wolford, Applied Numerical Methods for Digital Computation (Harper & Row, New York, 1985).
[42] Musgrave, M. J. P. (1970). Crystal acoustics. San Francisco: Holden Day.
[43] V. T. Grinchenko and A. F. Ulitko, “A dynamic problem of elasticity theory for a rectangular prism,” Int. Appl. Mech., vol. 7, no. 9, pp. 979-984, 1971.
[44] D. J. Gorman, “Free in-plane vibration analysis of rectangular plates by the method of superposition,” Journal of Sound and Vibration, vol. 272, no. 3-4, pp. 831-851, 2004.
[45] A. Preumont, Vibration control of active structures: an introduction, Springer, 2002.
[46] 黃育熙,壓電陶瓷平板、薄殼、與雙晶片三維耦合動態特性之實驗量測、數值計算與理論解析,國立台灣大學機械工程研究所博士論文,98年6月
[47] J. J. Shan, H. T. Liu, D. Sun, “Slewing and vibration control of a single-link flexible manipulator by positive position feedback,” Mechatronics, vol. 15, no. 4, pp. 487-503, 2005.
[48] H. Iu, D. Yu, A. Fitch, V. Sreeram, and H. Chen, “Controlling chaos in a memristor based circuit using a twin-t notch filter,” IEEE Transactions on Circuits and System I, vol. 58, no. 6, pp. 1337-1344, 2011.
[49] C. Y. Lin and C. M. Chang, “Hybrid proportional derivative/repetitive control for active vibration control of smart piezoelectric structures,” Journal of Vibration and Control, vol. 19, no. 7, pp. 992–1003, 2012.
[50] O. Rioul and M. Vetterli “Wavelets and signal processing,” IEEE Signal Processing Magazine, vol. 8, no. 4, pp. 14-38, 1991.
[51] S. Mallat and Z. Zhang, “Matching pursuit in a time-frequency dictionary,”IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3397-3415, 1993.
[52] Reference website: http://www.ym.edu.tw/~cflu/CFLu_course_matlabsig.html (Online search time:2016/06/21)
[53] R. Norton, Cam Design and Manufacturing Handbook. Industrial-Press, New York (2002)
[54] C. L. Hwang, C. Jan, and Y. H. Chen, “Piezomechanics using intelligent variable-structure control,” IEEE Transactions on Industrial Electronics, vol. 48, pp. 47-59, 2001.
[55] M. Rios-Gutierrez and G. Silva-Navarro, “Finite element and modal modeling of a cantilever beam with piezoelectrice patch actuator for vibration absorption,” International Conference on Computing Science and Automatic Control, pp. 1-6, 2009.
[56] P. D. Welch, “The use of fast Fourier transform for the estimation of power spectra: A method based on time-averaging over short, modi- fied periodograms,” IEEE Transactions on Audio Electroacoustics, vol. 15, no. 2, pp. 70-73, 1967.
[57] Reference website: http://www.mathworks.com/help/matlab/ref/fft.html (Online search time:2016/06/21)
[58] Reference website: https://en.wikipedia.org/wiki/Short-time_Fourier_transform (Online search time:2016/06/21)
[59] S. Qian and D. Chen, Joint Time-Frequency Analysis: Methods and Applications, Prentice-Hall, 1996.
[60] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, Academic Press, 3rd edition, 2009.
[61] Reference website: http://www.datasheets.com/search/partdetail/ KB20C02A/Kyt
ech+Electronics (Online search time:2016/06/21)

QR CODE