簡易檢索 / 詳目顯示

研究生: 黃雪芳
Hsueh-Fang Huang
論文名稱: 結合氧化應激與過濾擠壓法製備細胞外奈米囊泡並應用於癌症疫苗
Preparation of Nanovesicle via Oxidative Stress and Extrusion for Cancer Vaccine Application
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 李振綱
Cheng-Kang Lee
林忻怡
Hsin-Yi Lin
陳賜原
Szu-Yuan Chen
城崎 由紀
Yuki Shirosaki
林明緯
Ming-Wei Lin
王孟菊
Meng-Jiy Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 111
中文關鍵詞: 癌症疫苗細胞外奈米囊泡氧化應激過濾擠壓法光動力治療法大氣電漿靜電紡絲奈米纖維神經導管
外文關鍵詞: Cancer vaccine, Oxidative stress, Extrusion, Photo-dynamic therapy (PDT), Atmospheric pressure plasma jet (APPJ), Extracellular nanovesicles (EVs), Electrospinning, Nanofiber, Nerve conduit
相關次數: 點閱:421下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文可分為三個部分,第一部分為使用氧化應激法 (oxidative stress) 處理肺癌細胞 (Lewis lung carcinoma, LLC),使其細胞膜表面表現大量抗原 (antigen) 與損傷分子 (damage-associated molecular patterns, DAMPs),再將細胞擠壓過濾製備奈米囊泡,最後使奈米囊泡回溶於細胞培養液,用於培養巨噬細胞 (reticulum cell sarcoma, J774A.1) 進行細胞體外實驗。第二部分為將LLC混合細胞基底質 (matrigel matrix) 注射於C57BL/6 (B6) 小鼠的皮下組織,並觀察腫瘤大小及量測小鼠體重,觀察奈米囊泡疫苗抑制腫瘤生長的效果。第三部分為使用靜電紡絲製備聚乙二醇 (polyethylene oxide, PEO) 奈米纖維,並將神經細胞 (neurona Schwann cell, RT4-D6P2T) 培養於PEO奈米纖維上,並使用MTT assay檢測細胞存活率,探討PEO奈米纖維作為神經導管的可能性。
癌症為台灣十大死因之首,為全球十大死因的第二名,僅次於心血管疾病,其中肺癌佔最大比例,由此可知癌症治療的重要性。本論文使用三種不同的氧化應激法處理肺癌細胞:(1) 使用含有濃度為30 μM H2O2的培養液 (dulbecco's high glucose modified eagles medium, DMEM),培養LLC細胞,製備成H2O2疫苗;(2) 使用4 μg/ml 光敏劑 (photosensitizer) 維替泊芬 (verteporfin) 培養1小時,再使用光動力療法 (photodynamic therapy, PDT),亦即於690 nm波長下強度為10 J/cm2的二極體雷射光束照射,收取上清液製備成Vs疫苗;過濾擠壓LLC製備成Ve疫苗(3) 使用大氣電漿 (atmospheric pressure plasma jet, APPJ) 處理,利用頻率為24 kHz、電壓為7 kV、氣體流率為1 L/min的參數,並固定電漿與樣品的距離為2 cm,處理LLC細胞60秒,製備成APPJ疫苗。利用上述的三種方式處理肺癌細胞,使肺癌細胞形成癌症免疫原性細胞 (immunogenic cancer cell),再經由過濾擠壓法 (extrusion),製備細胞外奈米囊泡 (extracellular nanovesicles, EVs),探討其作為癌症疫苗的可能性。
將製備完成的奈米囊泡,用於活化J774A.1,並使其分化為M1型態並釋出一氧化氮 (nitric oxide, NO),藉由格里斯試驗 (Griess assay) 檢測NO,藉此推測疫苗活化J774A.1的能力。由格里斯試驗法可以得知,使用H2O2疫苗活化J774A.1細胞,使其釋出較多的一氧化氮,濃度為16.87  2.46 μM。M1形態的巨噬細胞除了會釋出一氧化氮外,亦會抑制腫瘤細胞生長、或是殺死癌細胞,因此,本論文將被活化的J774A.1細胞與LLC癌細胞共培養,再使用流式細胞分選儀檢測共培養48小時後培養皿中的細胞比例,結果使用冷凍解凍法 (F/T) 製備的LLC細胞碎片,對活化J774A.1與LLC的LLC/J774A.1比例為3.48  0.64,而由H2O2、Vs、Ve、及APPJ疫苗活化的J774A.1與LLC的LLC/J774A.1比例分別為3.44  0.59、2.00  0.48、1.42  0.15與1.81  0.11,顯示使用PDT處理LLC、並使用過濾擠壓法製備的疫苗活化J774A.1,對抑制LLC效果最佳;由F/T收集的細胞碎片,用於活化J774A.1並抑制LLC的結果可以得知,結合氧化應激法與過濾擠壓法,製備奈米囊泡可有效的活化J774A.1,此種奈米囊泡應用於癌症疫苗有相當大的潛力。第二部分為將LLC細胞注射於小鼠皮下組織,並觀察腫瘤生長速率,觀察結果顯示腫瘤於16到28天時明顯增大,小鼠體重亦會增加約1到2克。
第三部分為使用靜電紡絲製備直徑為200至400 nm的PEO奈米纖維,並使用RT4-D6P2T神經細胞進行細胞活性分析實驗,結果顯示使用2 wt.%磷灰石混合10 wt.% PEO製備的奈米纖維可使RT4-D6P2T增生,MTT assay檢測結果顯示從培養第一天到第七天的呈色強度由0.082增加至2.26。因此,使用靜電紡絲製備奈米纖維應用於神經導管具有相當大的潛力。


The Ministry of Health and Welfare of Taiwan reported that, cancer was the first leading cause of death in Taiwan at 2017, which was also the second important cause of death globally. The most common types of cancers was lung cancer which caused 1.76 million deaths in 2018. Therefore, cancer therapies are of great importance. This study aims to prepare cancer vaccine by oxidative stress treatment and extrusion.
This study applied three different kinds of oxidative stress sources to treat Lewis lung carcinoma (LLC) cell: (i) 30 μM H2O2 (H2O2 vaccine), (ii) photo-dynamic therapy (PDT), keep the medium to collect nanovesicles as Vs vaccine, and extruded LLC after PDT treatment as Ve vaccine, and (iii) atmospheric pressure plasma jet (APPJ), which can get APPJ vaccine. The cancer cells became immunogenic cancer cells after exposure to oxidative stresses, and the cells were induced to apoptosis cells. Immunogenic cancer cells would then express damage-associated molecular patterns (DAMPs) and antigens on the surfaces of cell membranes followed by releasing spontaneous vesicles, which could activate the antigen presenting cells. In order to promote the yield of vesicles, the apoptosis cancer cells were extruded by with 80 psi dry air of filter extrusion, followed by centrifugation.
After H2O2 treatment and filter extrusion, the average diameter of vesicles was 207 nm and concentration of vesicles was 3.84  1010 NVs/2  107 cells, analyzed by nanoparticle tracking analysis (NTA). The efficiency of activating reticulum cell sarcoma (J774A.1) by different oxidative stress treated vesicles was determined by Griess assay. The results showed that the highest concentration of NO was 16.87  2.46 μM, by H2O2 treatment on vaccine for the activation of J774A1. The cytotoxicity of the J774A.1 primed with various vaccines towards LLC cells was evaluated in vitro by co-culturing LLC cells and J774A.1 to understand the potential of vesicles as cancer vaccine. The LLC/J774A.1 ratio by co-culture of LLC and J774A.1 activated by F/T, H2O2, Vs, Ve, and APPJ vaccine was 3.48  0.64, 3.44  0.59, 2.00  0.48, 1.42  0.15, and 1.81  0.11, respectively. The results showed that the incorporation of oxidative stress and extrusion method possessed good efficacy and reproducibility for the preparation of cancer vaccine
For the polyethylene oxide (PEO) electrospinning nanofibers, RT4-D6P2T cells were cultivated on the nanofibers as scaffolds to evaluate the potential for nerve repair. The effects of the applied voltages for electrospinning on the average diameter of the PEO nanofibers were evaluated by scanning electron microscopy (SEM). In order to prevent the dissolution of PEO nanofibers in aqueous solutions, 2.5 wt% of pentaerythritol triacrylate (PETA) was used as a chemical cross-linker. The correlations between the diameter of nanofibers and the cell responses were determined by MTT assay. The results of SEM observation indicated that the average diameter of the as-electrospun PEO nanofibers was 418 ± 134 nm, 286 ± 89 nm, and 328 ± 95 nm at the applied voltages of 10, 15, and 20 kV, respectively. To promote the biocompatibility of the electrospun PEO nanofibers, 2.0 wt% of apatite was incorporated into the polymer solution during electrospinning processes. With the addition of apatite, the average diameter of PEO nanofibers increased from 286 ± 89 to 426 ± 133 nm. MTT assay showed that PEO nanofibers containing 2 wt% apatite can significantly promote the cell growth comparing with the pristine PEO fibers, such that the cell density increased from 0.082 to 2.26 with the prolonged incubation time from 1 to 7 days. The results suggested that the as-prepared PEO nanofibers incorporated with 2.0 wt% of apatite displayed great potential for the applications in nerve tissue repair.

中文摘要 II Abstract IV 致謝 VI 目錄 VIII 圖目錄 X 表目錄 XVII 第一章、 緒論 1 1-1 前言 1 1-2 研究原理 3 1-3 研究目標 4 第二章、 文獻回顧 6 2-1 癌症與癌症治療法 6 2-1-1 癌症 6 2-1-2 癌症治療法 7 2-1-3 癌症免疫療法 8 2-1-4 氧化應激法 (oxidative stress) 與細胞凋亡 9 2-1-5 氧化應激法於癌症治療的應用 9 2-2 奈米囊泡 11 2-2-1 奈米囊泡 11 2-2-2 過濾擠壓法製備奈米囊泡做為癌症疫苗的應用 12 2-3 免疫系統 13 2-3-1 免疫系統的介紹 13 2-3-2 抗原表現細胞與免疫細胞的介紹 14 2-3-3 巨噬細胞與癌症治療 14 2-4 奈米纖維 16 2-4-1 奈米材料 16 2-4-2 奈米纖維 16 2-4-3 電紡絲的種類與介紹 16 2-5 神經系統 17 2-5-1 神經系統的介紹 17 2-5-2 周圍神經修復 18 第三章、 實驗方法與儀器原理 26 3-1 實驗設備 26 3-2 實驗藥品與細胞株 28 3-3 實驗方法 30 3-3-1 癌症疫苗體外實驗 31 3-3-3 探討使用靜電紡絲製備神經導管可能性 37 3-3 實驗分析 39 3-4-5 X光繞射分析 (X-ray diffraction, XRD) 40 3-4-6 場發射電子顯微鏡分析 (field emission scanning electron microscopy, FESEM) 41 3-4-7 萬能材料試驗機 (universal testing machine) 41 3-4-8 統計學分析 (statistical analysis) 41 第四章、 實驗結果與討論 42 4-1 奈米囊泡對體外實驗並應用於癌症疫苗 42 4-1-1 製備疫苗的細胞數量 42 4-1-2 光動力療法與大氣電漿處理時溫度的影響 43 4-1-3 使用氧化應激法處理癌細胞的表面型態 44 4-1-4 奈米囊泡大小分布與濃度 44 4-1-5 使用不同的滅菌方式對疫苗的影響 45 4-1-6 檢測培養液中的一氧化氮了解疫苗活化 J774A.1 的細效果 46 4-1-7 巨噬細胞對癌細胞的毒殺率測定 46 4-1-8 巨噬細胞對癌細胞與一般細胞的影響 48 4-2 奈米囊泡對體內實驗並應用於癌症疫苗 48 4-2-1 小鼠體內實驗與腫瘤的生長曲線 48 4-3 製備奈米纖維於神經導管的應用 49 4-3-1 聚乙二醇奈米纖維的表面型態 49 4-3-2 PEO奈米纖維的結晶型態 50 4-3-3 PEO奈米纖維的機械強度 50 4-3-4 RT4-D6P2T於PEO奈米纖維的細胞存活性 51 第五章、 結論與未來展望 74 5-1 不同方法製備疫苗對活化J774A.1的效果 74 5-2 使用疫苗活化的J774A.1對LLC的毒殺率 75 5-3 癌症疫苗的體內實驗 75 5-4 靜電紡絲製備奈米纖維並應用於神經導管 75 第六章、 參考文獻 76 第七章、 附錄 (Q&A) 86

Reinert, T., L.V. Schøler, R. Thomsen, H. Tobiasen, S. Vang, I. Nordentoft, P. Lamy, A.-S. Kannerup, F.V. Mortensen, K. Stribolt, S. Hamilton-Dutoit, H.J. Nielsen, S. Laurberg, N. Pallisgaard, J.S. Pedersen, T.F. Ørntoft, and C.L. Andersen, Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery. 2016. 65(4): p. 625-634.
5. Brigger, I., C. Dubernet, and P. Couvreur, Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, 2012. 64: p. 24-36.
6. Song, G., L. Cheng, Y. Chao, K. Yang, and Z. Liu, Emerging Nanotechnology and Advanced Materials for Cancer Radiation Therapy. 2017. 29(32): p. 1700996.
7. Institute, N.C., Immunotherapy for Cancer. 2018.
8. Guo, C., M.H. Manjili, J.R. Subjeck, D. Sarkar, P.B. Fisher, and X.Y. Wang, Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res, 2013. 119: p. 421-75.
9. Isaacs, J. and T.J.H. Browne, Overcoming short gaps in peripheral nerve repair: conduits and human acellular nerve allograft. 2014. 9(2): p. 131-137.
10. Gaudin, R., C. Knipfer, A. Henningsen, R. Smeets, M. Heiland, and T.J.B.r.i. Hadlock, Approaches to peripheral nerve repair: generations of biomaterial conduits yielding to replacing autologous nerve grafts in craniomaxillofacial surgery. 2016. 2016.
11. Gnavi, S., B.E. Fornasari, C. Tonda-Turo, R. Laurano, M. Zanetti, G. Ciardelli, and S. Geuna, The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design. Int J Mol Sci, 2015. 16(6): p. 12925-42.
12. Johnson, E.O., A.B. Zoubos, and P.N. Soucacos, Regeneration and repair of peripheral nerves. Injury, 2005. 36(4, Supplement): p. S24-S29.
13. Yang, F., R. Murugan, S. Wang, and S. Ramakrishna, Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 2005. 26(15): p. 2603-10.
14. Zhou, C., R. Chu, R. Wu, and Q. Wu, Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules, 2011. 12(7): p. 2617-25.
15. Schnell, E., K. Klinkhammer, S. Balzer, G. Brook, D. Klee, P. Dalton, and J. Mey, Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials, 2007. 28(19): p. 3012-25.
16. Panseri, S., C. Cunha, J. Lowery, U. Del Carro, F. Taraballi, S. Amadio, A. Vescovi, and F.J.B.B. Gelain, Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. 2008. 8(1): p. 39.
17. Li, W.-J., C.T. Laurencin, E.J. Caterson, R.S. Tuan, and F.K. Ko, Electrospun nanofibrous structure: A novel scaffold for tissue engineering. 2002. 60(4): p. 613-621.
18. Zhou, C., Q. Wang, and Q. Wu, UV-initiated crosslinking of electrospun poly(ethylene oxide) nanofibers with pentaerythritol triacrylate: Effect of irradiation time and incorporated cellulose nanocrystals. Carbohydrate Polymers, 2012. 87(2): p. 1779-1786.
19. Peer, D., J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, and R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007. 2: p. 751.
20. Allavena, P. and A. Mantovani, Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. 2012. 167(2): p. 195-205.
21. Benign Tumors. National Institute of Health. MedlinePlus., 2016.
22. Venere, E., New direction urged to improve cancer nanotechnology. medical press, 2016.
23. Jain, R.K., Transport of Molecules in the Tumor Interstitium: A Review. Cancer Research, 1987. 47(12): p. 3039-3051.
24. Seymour, L.W., Passive tumor targeting of soluble macromolecules and drug conjugates. Critical reviews in therapeutic drug carrier systems, 1992. 9(2): p. 135-187.
25. Baban, D.F. and L.W. Seymour, Control of tumour vascular permeability. Advanced Drug Delivery Reviews, 1998. 34(1): p. 109-119.
26. Hobbs, S.K., W.L. Monsky, F. Yuan, W.G. Roberts, L. Griffith, V.P. Torchilin, and R.K. Jain, Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proceedings of the National Academy of Sciences, 1998. 95(8): p. 4607-4612.
27. Yuan, F., M. Dellian, D. Fukumura, M. Leunig, D.A. Berk, V.P. Torchilin, and R.K. Jain, Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size. Cancer Research, 1995. 55(17): p. 3752-3756.
28. Unezaki, S., K. Maruyama, J.-I. Hosoda, I. Nagae, Y. Koyanagi, M. Nakata, O. Ishida, M. Iwatsuru, and S. Tsuchiya, Direct measurement of the extravasation of polyethyleneglycol-coated liposomes into solid tumor tissue by in vivo fluorescence microscopy. International Journal of Pharmaceutics, 1996. 144(1): p. 11-17.
29. Institute, N.C., NCI Dictionary of Cancer Terms.
30. intelligence, K.a., Dramatic remissions in blood cancer in immunotherapy treatment trial. 2016.
31. Emens, L.A., Cancer vaccines: on the threshold of success. Expert Opinion on Emerging Drugs, 2008. 13(2): p. 295-308.
32. Ingram, S. and M.J.B. Diotallevi, Reactive oxygen species: Rapid fire in inflammation. 2017. 39: p. 30-33.
33. Gagné, F., Oxidative Stress, in Biochemical Ecotoxicology. 2014. p. 103-115.
34. Hampton, M.B. and S. Orrenius, Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Letters, 1997. 414(3): p. 552-556.
35. Garg, A.D., D.V. Krysko, P. Vandenabeele, P.J.P. Agostinis, and P. Sciences, DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown. 2011. 10(5): p. 670-680.
36. Agostinis, P., K. Berg, K.A. Cengel, T.H. Foster, A.W. Girotti, S.O. Gollnick, S.M. Hahn, M.R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B.C. Wilson, and J. Golab, Photodynamic therapy of cancer: an update. CA Cancer J Clin, 2011. 61(4): p. 250-81.
37. Felsher, D.W., Cancer revoked: oncogenes as therapeutic targets. Nat Rev Cancer, 2003. 3(5): p. 375-80.
38. Agostinis, P., K. Berg, K.A. Cengel, T.H. Foster, A.W. Girotti, S.O. Gollnick, S.M. Hahn, M.R. Hamblin, A. Juzeniene, and D.J.C.a.c.j.f.c. Kessel, Photodynamic therapy of cancer: an update. 2011. 61(4): p. 250-281.
39. Chin-Yi Chung, S.-y.C., Therapeutic cancer vaccine made of cancer cell-derived nanovesicles produced by oxidative stress induced expression of damage-associated molecular pattern and filter extrusion. 2019.
40. Takamatsu, T., K. Uehara, Y. Sasaki, H. Miyahara, Y. Matsumura, A. Iwasawa, N. Ito, T. Azuma, M. Kohno, and A. Okino, Investigation of reactive species using various gas plasmas. RSC Adv., 2014. 4(75): p. 39901-39905.
41. Sarangapani, C., N.N. Misra, V. Milosavljevic, P. Bourke, F. O’Regan, and P.J. Cullen, Pesticide degradation in water using atmospheric air cold plasma. Journal of Water Process Engineering, 2016. 9: p. 225-232.
42. Alderton, G.K., Fishing for exosomes. Nature Reviews Cancer, 2015. 15: p. 453.
43. Matsumura, S., T. Minamisawa, K. Suga, H. Kishita, T. Akagi, T. Ichiki, Y. Ichikawa, and K. Shiba, Subtypes of tumour cell-derived small extracellular vesicles having differently externalized phosphatidylserine. Journal of Extracellular Vesicles, 2019. 8(1): p. 1579541.
44. Kharaziha, P., S. Ceder, Q. Li, and T. Panaretakis, Tumor cell-derived exosomes: A message in a bottle. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2012. 1826(1): p. 103-111.
45. Tavoosidana, G., G. Ronquist, S. Darmanis, J. Yan, L. Carlsson, D. Wu, T. Conze, P. Ek, A. Semjonow, E. Eltze, A. Larsson, U.D. Landegren, and M. Kamali-Moghaddam, Multiple recognition assay reveals prostasomes as promising plasma biomarkers for prostate cancer. 2011. 108(21): p. 8809-8814.
46. Rabinowits, G., C. Gerçel-Taylor, J.M. Day, D.D. Taylor, and G.H. Kloecker, Exosomal MicroRNA: A Diagnostic Marker for Lung Cancer. Clinical Lung Cancer, 2009. 10(1): p. 42-46.
47. Im, H., H. Shao, Y.I. Park, V.M. Peterson, C.M. Castro, R. Weissleder, and H. Lee, Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nature Biotechnology, 2014. 32: p. 490.
48. Vlassov, A.V., S. Magdaleno, R. Setterquist, and R. Conrad, Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica et Biophysica Acta (BBA) - General Subjects, 2012. 1820(7): p. 940-948.
49. Psaila, B. and D. Lyden, The metastatic niche: adapting the foreign soil. Nature Reviews Cancer, 2009. 9: p. 285.
50. Sceneay, J., M.J. Smyth, A.J.C. Möller, and M. Reviews, The pre-metastatic niche: finding common ground. 2013. 32(3): p. 449-464.
51. Kim, M.S., M.J. Haney, Y. Zhao, V. Mahajan, I. Deygen, N.L. Klyachko, E. Inskoe, A. Piroyan, M. Sokolsky, O. Okolie, S.D. Hingtgen, A.V. Kabanov, and E.V. Batrakova, Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine: Nanotechnology, Biology and Medicine, 2016. 12(3): p. 655-664.
52. Wahlgren, J., T.D.L. Karlson, M. Brisslert, F. Vaziri Sani, E. Telemo, P. Sunnerhagen, and H. Valadi, Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Research, 2012. 40(17): p. e130-e130.
53. Alvarez-Erviti, L., Y. Seow, H. Yin, C. Betts, S. Lakhal, and M.J.A. Wood, Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 2011. 29: p. 341.
54. El Andaloussi, S., I. Mäger, X.O. Breakefield, and M.J.A. Wood, Extracellular vesicles: biology and emerging therapeutic opportunities. Nature Reviews Drug Discovery, 2013. 12: p. 347.
55. Yuan, F., Transvascular drug delivery in solid tumors. Seminars in Radiation Oncology, 1998. 8(3): p. 164-175.
56. Krishna, R. and L.D. Mayer, Multidrug resistance (MDR) in cancer: Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. European Journal of Pharmaceutical Sciences, 2000. 11(4): p. 265-283.
57. Rivoltini, L., M. Carrabba, V. Huber, C. Castelli, L. Novellino, P. Dalerba, R. Mortarini, G. Arancia, A. Anichini, S. Fais, and G. Parmiani, Immunity to cancer: attack and escape in T lymphocyte–tumor cell interaction. Immunological Reviews, 2002. 188(1): p. 97-113.
58. Emens, L.A., Roadmap to a Better Therapeutic Tumor Vaccine. International Reviews of Immunology, 2006. 25(5-6): p. 415-443.
59. Wan, Y., L. Wang, C. Zhu, Q. Zheng, G. Wang, J. Tong, Y. Fang, Y. Xia, G. Cheng, X. He, and S.Y. Zheng, Aptamer-Conjugated Extracellular Nanovesicles for Targeted Drug Delivery. Cancer Res, 2018. 78(3): p. 798-808.
60. Delves, P.J. and I.M. Roitt, The Immune System. 2000. 343(1): p. 37-49.
61. Hooper, L.V., D.R. Littman, and A.J. Macpherson, Interactions Between the Microbiota and the Immune System. 2012. 336(6086): p. 1268-1273.
62. Martinez, F.O., L. Helming, and S.J.A.r.o.i. Gordon, Alternative activation of macrophages: an immunologic functional perspective. 2009. 27: p. 451-483.
63. Gordon, S. and P.R.J.N.r.i. Taylor, Monocyte and macrophage heterogeneity. 2005. 5(12): p. 953.
64. Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M.J.T.i.i. Locati, The chemokine system in diverse forms of macrophage activation and polarization. 2004. 25(12): p. 677-686.
65. Staudacher, A.H., Y. Li, V. Liapis, J.J.C. Hou, D. Chin, O. Dolezal, T.E. Adams, P.H. van Berkel, and M.P. Brown, APOMAB Antibody-Drug Conjugates Targeting Dead Tumor Cells are Effective In Vivo. Mol Cancer Ther, 2019. 18(2): p. 335-345.
66. Velmurugan, R., D.K. Challa, S. Ram, R.J. Ober, and E.S. Ward, Macrophage-Mediated Trogocytosis Leads to Death of Antibody-Opsonized Tumor Cells. Molecular Cancer Therapeutics, 2016. 15(8): p. 1879-1889.
67. Auffray, C., M.H. Sieweke, and F.J.A.r.o.i. Geissmann, Blood monocytes: development, heterogeneity, and relationship with dendritic cells. 2009. 27: p. 669-692.
68. Stout, R.D., S.K. Watkins, and J. Suttles, Functional plasticity of macrophages: in situ reprogramming of tumor‐associated macrophages. Journal of leukocyte biology, 2009. 86(5): p. 1105-1109.

無法下載圖示 全文公開日期 2024/08/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE