簡易檢索 / 詳目顯示

研究生: 黃信智
Hsin-Chih Huang
論文名稱: 高活性非貴重金屬觸媒於質子交換膜燃料電池陰極端之應用
High Activity of Non-precious Metal Catalyst for Cathode in Proton Exchange Membrane Fuel Cell
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 陳貴賢
Kuei-Hsien Chen
林麗瓊
Li-Chyong Chen
黃炳照
Bing-Joe Hwang
林昇佃
Shawn D. Lin
吳嘉文
Chia-Wen Wu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 123
中文關鍵詞: 氧氣還原反應燃料電池非貴重金屬觸媒原位X光吸收光譜
外文關鍵詞: Oxygen reduction reaction (ORR), fuel cells, non-precious metal catalyst, in-situ XAS.
相關次數: 點閱:292下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以自製的方式合成Corrole系列過渡金屬環大錯合物為非白金觸媒,取代原有的白金觸媒,並且應用於質子交換膜燃料電池陰極端,比較當中心金屬原子為鈷及鐵時(Co-Corrole, Fe-Corrole)其氧氣還原能力的比較,發現熱處理過後的觸媒具有極佳的還原能力,其中Fe-Corrole相較於Co-Corrole具有更好的還原活性,其電子轉移數可達 3.95和雙氧水產生率約2.5%,而在電池最大輸出功率的部分可達到 330 mW/cm2,可見此觸媒的優勢。在X光吸收光譜分析上,發現Co-Corrole在高溫熱處理後其價數由3+價轉變為2+價,而2+價的鈷在進行氧氣還原反應時,所需要的活化能比起3+的鈷要來得小,所以2+價的鈷會比較容易進行氧氣還原反應;接著進一步以原位X光吸收光譜分析(In-situ XAS)Fe-Corrole觸媒,在反應過程中,可發現在不同電位下,其Fe-N鍵長會隨之改變,再搭配方波伏安法的結果,可以建立Fe-corrole觸媒於氧氣還原反應中的機制。
另一部分是以維他命B9做為新的氮來源前驅物,加以混合過渡金屬和碳載體,經過燒結而形成用於氧氣還原反應之新觸媒(Fe-FA/C),進而應用於質子交換模燃料電池中。在電化學測試中其觸媒表現出絕佳的活性,傾向於理想四個電子轉移之反應。而在電池總輸出功率的部分可達到 330 mW/cm2,以及不錯的穩定性。而其氧氣還原反應反應的提升可歸咎於多芳香族之網狀結構、quaternary (graphitic)-type nitrogen結構以及其配位結構。另外,原位X光吸收光譜分析也更進一步地了解其反應機制。


Non-precious metal catalysts of the oxygen reduction reaction (ORR) are highly favored for use in proton exchange membrane fuel cell (PEMFC) because of their relatively low cost. This study demonstrates the pyrolyzed M-corrole (M: Co, Fe) catalysts of the oxygen reduction reaction in PEMFC cathodes, with high catalytic performance. The py-Co-corrole/C at 700 °C exhibits the optimized ORR activity. The H2-O2 PEMFC using py-Co-corrole/C in the cathode reveals a maximum power density of 275 mW cm-2, which yields a higher performance and a lower metal loading than previous studies of Co-based catalysts for PEMFCs. The enhancement of the ORR activity of py-Co-corrole/C is attributed to the four-coordinated Co-corrole structure and the oxidation state of the central cobalt. While the py-Fe-corrole/C exhibits excellent ORR activity, via the direct four-electron reduction pathway, in the reduction of O2 to H2O, it is used in the H2-O2 PEMFC that produces high activity and excellent stability. By using the square wave voltammetry, the py-Fe-corrole/C perform a redox reaction of Fe(II)/Fe(III) at 0.6 V. Finally, the in-situ X-ray adsorption spectroscopy has been applied to determine the ORR mechanism of py-Fe-corrole/C.
Second work demonstrates carbon black-supported pyrolyzed vitamin B9 (folic acid) catalyst (py-Fe-FA/C) for the ORR in PEMFC. The ORR measurements reveal that py-Fe-FA/C shows an excellent ORR activity, via the direct four-electron reduction pathway. The H2-O2 PEMFC using py-Fe-FA/C in the cathode produces the maximum power density of 330 mW cm-2, with good stability. The enhanced ORR activity is attributed to the network structure of poly-aromatic hydrocarbons, the quaternary (graphitic)-type nitrogen and the coordination structure of the py-Fe-FA/C, as confirmed by the ORR mechanism study using the XPS and the in-situ X-ray adsorption spectroscopy.

摘要................................... I Abstract .............................III 誌謝....................................V Contents ..............................VI List of Figures ...................... XI List of Tables.......................XVIII Chapter 1 Introduction .................1 1-1 Introduction of fuel cells .........1 1-2 Overview of PEM fuel cell...........8 1-3 Property for fuel cell application.......13 1-4 Polarization curve of fuel cell..........14 1-4 Principle of X-ray absorption spectroscopy .........16 Chapter 2 Literature Review............20 2-1 Important discovery of non-precious metal catalysts.....20 2-2 Recent research of non-precious metal catalysts.........25 2-3 Corrole-related study ...............................28 2-4 Idea from biological phenomenon......................30 2-5 Challenge to ORR.....................................31 Chapter 3 Motivation ....................................33 Chapter 4 Experimental Instruments ......................36 4-1 Chemicals and instruments............................36 4-2 Electrochemical measurements ........................39 4-3 Raman spectroscopy...................................42 4-4 X-ray photoelectron spectroscopy.....................43 4-5 X-ray absorption spectroscopy .......................44 4-6 In-situ XAS setup ...................................46 4-7 Fuel cell test.......................................47 Chapter 5 Synthesis of Corrole Derivatives as Cathode Catalysts for PEM Fuel Cell Application ...................................49 5-1 Experimental.........................................49 5-1-1 General procedure for the synthesis of 5, 10, 15-triphenyl corrole .................................................49 5-1-2 Synthesis of (triphenylphosphine) (5,10,15-triphenyl corrolato) cobalt (III) .................................50 5-1-3 Synthesis of (nitrosyl) (5,10,15-triphenyl corrolato) iron (III) ...................................................51 5-1-4 Preparations of pyrolyzed Co-corrole and pyrolyzed VIII?Co-corrole/C.........................................52 5-1-5 Preparations of pyrolyzed Fe-corrole and pyrolyzed Fe-corrole/C ............................................53 5-1-6 Preparations of py-CoTMPP/C and Co/C...............54 5-1-7 Preparations of py-FePc/C and Fe/C.................55 5-2 Results and discussion...............................57 5-2-1 ORR activity of Co-corrole catalysts ..............57 5-2-2 Single cell test of Co-corrole catalysts...........60 5-2-3 Raman spectra analysis of Co-corrole catalysts.....62 5-2-4 X-ray photoelectron spectra analysis of Co-corrole catalysts................................................63 5-2-5 X-ray absorption spectra analysis of Co-corrole catalysts65 5-2-6 ORR activity of Fe-corrole catalysts...............69 5-2-7 Single cell test of Fe-corrole catalysts ..........72 5-2-8 Raman spectra analysis of Fe-corrole catalysts ....75 5-2-9 X-ray photoelectron spectra analysis of Fe-corrole catalysts ...............................................76 5-2-10 X-ray absorption spectra analysis of Fe-corrole catalysts .........................................................78 5-2-11 The possible mechanism of Fe-corrole catalysts....79 Chapter 6 Pyrolysis of Iron-Vitamin B9 as a Potential Non-Precious Metal Electrocatalyst for Oxygen Reduction Reaction .....86 6-1 Experimental.........................................86 6-1-1 Preparations of pyrolyzed Fe-FA and pyrolyzed Fe-FA/C 6-1-2 Preparations of py-FePc/C and Fe/C.................87 6-2 Results and discussion...............................88 6-2-1 ORR activity of Fe-FA/C catalysts..................88 6-2-2 Single cell test of Fe-FA/C catalysts .............92 6-2-3 Raman spectra analysis of Fe-FA/C catalysts .......93 6-2-4 X-ray photoelectron spectra analysis of Fe-FA/C catalysts .........................................................94 6-2-5 X-ray absorption spectra analysis of Fe-FA/C catalysts ...96 6-2-6 The possible mechanism of Fe-FA/C catalysts ..............98 Chapter 7 Conclusion................................. ..........101 7-1 Synthesis of corrole derivatives as cathode catalysts for PEM fuel cell application ...............................................101 7-2 Pyrolysis of iron-vitamin B9 as a potential non-precious metal electrocatalyst for oxygen reduction reaction...................102 References............................................... ......103

[1] W.R. Grove, On The Gaseous Voltaic Battery. Phillosophycal Magazine and Journal of Science Ser. 3, 201 (1842) 417-420.
[2] F.T. Bacon, The High Pressure Hydrogen-Oxygen Fuel Cell. Industrial & Engineering Chemistry, 52 (1960) 301-303.
[3] W.T. Grubb, L.W. Niedrach, Batteries with Solid Ion‐Exchange Membrane Electrolytes: II . Low‐Temperature Hydrogen‐Oxygen Fuel Cells. Journal of The Electrochemical Society, 107 (1960) 131-135.
[4] F. Barbir, Chapter One - Introduction, in: PEM Fuel Cells (Second Edition), Academic Press, Boston, 2013, pp. 1-16.
[5] V.S. Bagotsky, Introduction, in: Fuel Cells, John Wiley & Sons, Inc., 2008, pp. 1-5.
[6] V.S. Bagotsky, The Long History of Fuel Cells, in: Fuel Cells, John Wiley & Sons, Inc., 2008, pp. 27-42.
[7] V.S. Bagotsky, The Working Principles of a Fuel Cell, in: Fuel Cells, John Wiley & Sons, Inc., 2008, pp. 7-26.
[8] F. Barbir, Chapter Four - Main Cell Components, Material Properties, and Processes, in: PEM Fuel Cells (Second Edition), Academic Press, Boston, 2013, pp. 73-117.
[9] V.S. Bagotsky, Proton-Exchange Membrane Fuel Cells, in: Fuel Cells, John Wiley & Sons, Inc., 2008, pp. 43-72.
[10] A. Oedegaard, C. Hebling, A. Schmitz, S. Mller-Holst, R. Tunold, Influence of diffusion layer properties on low temperature DMFC. Journal of Power Sources, 127 (2004) 187-196.
[11] R. Wang, C. Xu, X. Bi, Y. Ding, Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts. Energy Environ. Sci., 5 (2012) 5281-5286.
[12] S.-Y. Huang, P. Ganesan, B.N. Popov, Electrocatalytic Activity and Stability of Titania-Supported Platinum–Palladium Electrocatalysts for Polymer Electrolyte Membrane Fuel Cell. ACS Catalysis, 2 (2012) 825-831.
[13] J.-H. Jang, J. Kim, Y.-H. Lee, I.Y. Kim, M.-H. Park, C.-W. Yang, S.-J. Hwang, Y.-U. Kwon, One-pot synthesis of core-shell-like Pt3Co nanoparticle electrocatalyst with Pt-enriched surface for oxygen reduction reaction in fuel cells. Energy Environ. Sci., 4 (2011) 4947-4953.
[14] G. Chang, G.C. Schatz, Modern Problems in Classical Electrodynamics. By Charles A. Brau. ChemPhysChem, 6 (2005) 374-374.
[15] J.D. Jackson, Classical Electrodynamics. John Wiley & Sons, (1999).
[16] R. Jasinski, A New Fuel Cell Cathode Catalyst. Nature, 201 (1964) 1212-1213.
[17] N.A. Savastenko, V. Brüser, M. Brüser, K. Anklam, S. Kutschera, H. Steffen, A. Schmuhl, Enhanced electrocatalytic activity of CoTMPP-based catalysts for PEMFCs by plasma treatment. Journal of Power Sources, 165 (2007) 24-33.
[18] I.H. P. Bogdanoff, M. Hilgendorff, I. Dorbandt, S. Fiechter and H. Tributsch, Probing Structural Effects of Pyrolysed CoTMPP-based Electrocatalysts for Oxygen Reduction via New Preparation Strategies. Journal of New Materials for Electrochemical Systems, 7 (2004) 85-92.
[19] C. Mocchi, S. Trasatti, Composite electrocatalysts for molecular O2 reduction in electrochemical power sources. Journal of Molecular Catalysis A: Chemical, 204–205 (2003) 713-720.
[20] X.-Y. Xie, Z.-F. Ma, X. Wu, Q.-Z. Ren, X. Yuan, Q.-Z. Jiang, L. Hu, Preparation and electrochemical characteristics of CoTMPP-TiO2NT/BP composite electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 52 (2007) 2091-2096.
[21] H. Liu, C. Song, Y. Tang, J. Zhang, J. Zhang, High-surface-area CoTMPP/C synthesized by ultrasonic spray pyrolysis for PEM fuel cell electrocatalysts. Electrochimica Acta, 52 (2007) 4532-4538.
[22] W. Jingjie, T. Haolin, P. Mu, W. Zhaohui, M. Wentao, Novel methanol electro-oxidation catalyst assisting with functional phthalocyanine supports. Electrochimica Acta, 54 (2009) 1473-1477.
[23] Y. Lu, R.G. Reddy, The electrochemical behavior of cobalt phthalocyanine/platinum as methanol-resistant oxygen-reduction electrocatalysts for DMFC. Electrochimica Acta, 52 (2007) 2562-2569.
[24] P. Convert, C. Coutanceau, P. Crouïgneau, F. Gloaguen, C. Lamy, Electrodes modified by electrodeposition of CoTAA complexes as selective oxygen cathodes in a direct methanol fuel cell. Journal of Applied Electrochemistry, 31 (2001) 945-952.
[25] C.W.B. Bezerra, L. Zhang, K. Lee, H. Liu, A.L.B. Marques, E.P. Marques, H. Wang, J. Zhang, A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochimica Acta, 53 (2008) 4937-4951.
[26] A. Serov, M. Min, G. Chai, S. Han, S. Seo, Y. Park, H. Kim, C. Kwak, Electroreduction of oxygen over iron macrocyclic catalysts for DMFC applications. Journal of Applied Electrochemistry, 39 (2009) 1509-1516.
[27] F. Jaouen, E. Proietti, M. Lefevre, R. Chenitz, J.P. Dodelet, G. Wu, H.T. Chung, C.M. Johnston, P. Zelenay, Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci., 4 (2011) 114-130.
[28] R. Bashyam, P. Zelenay, A class of non-precious metal composite catalysts for fuel cells. Nature, 443 (2006) 63-66.
[29] M. Lefevre, E. Proietti, F. Jaouen, J.P. Dodelet, Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells. Science, 324 (2009) 71-74.
[30] G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science, 332 (2011) 443-447.
[31] E. Proietti, F. Jaouen, M. Lefévre, N. Larouche, J. Tian, J. Herranz, J.-P. Dodelet, Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat Commun, 2 (2011) 416.
[32] Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, A review on non-precious metal electrocatalysts for PEM fuel cells. Energy and Environmental Science, 4 (2011) 3167-3192.
[33] A. Morozan, B. Jousselme, S. Palacin, Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ. Sci., 4 (2011) 1238-1254.
[34] D.S. Su, G. Sun, Nonprecious-Metal Catalysts for Low-Cost Fuel Cells. Angewandte Chemie International Edition, 50 (2011) 11570-11572.
[35] A.A. Gewirth, M.S. Thorum, Electroreduction of Dioxygen for Fuel-Cell Applications: Materials and Challenges. Inorganic Chemistry, 49 (2010) 3557-3566.
[36] Q. Liu, H. Zhang, H. Zhong, S. Zhang, S. Chen, N-doped graphene/carbon composite as non-precious metal electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 81 (2012) 313-320.
[37] H.-S. Oh, H. Kim, The role of transition metals in non-precious nitrogen-modified carbon-based electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 212 (2012) 220-225.
[38] H.-J. Zhang, X. Yuan, L. Sun, J. Yang, Z.-F. Ma, Z. Shao, Synthesis and characterization of non-precious metal binary catalyst for oxygen reduction reaction in proton exchange membrane fuel cells. Electrochimica Acta, 77 (2012) 324-329.
[39] D. Zhao, J.-L. Shui, C. Chen, X. Chen, B.M. Reprogle, D. Wang, D.-J. Liu, Iron imidazolate framework as precursor for electrocatalysts in polymer electrolyte membrane fuel cells. Chemical Science, 3 (2012) 3200-3205.
[40] Y. Hu, X. Zhao, Y. Huang, Q. Li, N.J. Bjerrum, C. Liu, W. Xing, Synthesis of self-supported non-precious metal catalysts for oxygen reduction reaction with preserved nanostructures from the polyaniline nanofiber precursor. Journal of Power Sources, 225 (2013) 129-136.
[41] A. Kong, B. Dong, X. Zhu, Y. Kong, J. Zhang, Y. Shan, Ordered Mesoporous Fe-Porphyrin-Like Architectures as Excellent Cathode Materials for the Oxygen Reduction Reaction in Both Alkaline and Acidic Media. Chemistry – A European Journal, 19 (2013) 16170-16175.
[42] B. Merzougui, A. Hachimi, A. Akinpelu, S. Bukola, M. Shao, A Pt-free catalyst for oxygen reduction reaction based on Fe–N multiwalled carbon nanotube composites. Electrochimica Acta, 107 (2013) 126-132.
[43] J. Shi, X. Zhou, P. Xu, J. Qiao, Z. Chen, Y. Liu, Nitrogen and Sulfur Co-doped Mesoporous Carbon Materials as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. Electrochimica Acta, 145 (2014) 259-269.
[44] A.H.A. Monteverde Videla, S. Ban, S. Specchia, L. Zhang, J. Zhang, Non-noble Fe–NX electrocatalysts supported on the reduced graphene oxide for oxygen reduction reaction. Carbon, 76 (2014) 386-400.
[45] J. Wang, S. Li, G. Zhu, W. Zhao, R. Chen, M. Pan, Novel non-noble metal electrocatalysts synthesized by heat-treatment of iron terpyridine complexes for the oxygen reduction reaction. Journal of Power Sources, 240 (2013) 381-389.
[46] H. Peng, S. Hou, D. Dang, B. Zhang, F. Liu, R. Zheng, F. Luo, H. Song, P. Huang, S. Liao, Ultra-high-performance doped carbon catalyst derived from o-phenylenediamine and the probable roles of Fe and melamine. Applied Catalysis B: Environmental, 158–159 (2014) 60-69.
[47] S.-T. Chang, C.-H. Wang, H.-Y. Du, H.-C. Hsu, C.-M. Kang, C.-C. Chen, J.C.S. Wu, S.-C. Yen, W.-F. Huang, L.-C. Chen, M.C. Lin, K.-H. Chen, Vitalizing fuel cells with vitamins: pyrolyzed vitamin B12 as a non-precious catalyst for enhanced oxygen reduction reaction of polymer electrolyte fuel cells. Energy Environ. Sci., 5 (2012) 5305-5314.
[48] Y. Gao, T.r. Åkermark, J. Liu, L. Sun, B.r. Åkermark, Nucleophilic Attack of Hydroxide on a MnV Oxo Complex: A Model of the O−O Bond Formation in the Oxygen Evolving Complex of Photosystem II. Journal of the American Chemical Society, 131 (2009) 8726-8727.
[49] A. Okamoto, R. Nakamura, H. Osawa, K. Hashimoto, Anchored Oxo-Bridged Bimetallic Complexes, (SiO)3TiOFe(corrole), on Silica Mesopores as Multi-Electron-Transfer Photosystems. The Journal of Physical Chemistry C, 112 (2008) 19777-19783.
[50] J. Grodkowski, P. Neta, E. Fujita, A. Mahammed, L. Simkhovich, Z. Gross, Reduction of cobalt and iron corroles and catalyzed reduction of CO2. Journal of Physical Chemistry A, 106 (2002) 4772-4778.
[51] K.M. Kadish, L. Fremond, Z.P. Ou, J.G. Shao, C.N. Shi, F.C. Anson, F. Burdet, C.P. Gros, J.M. Barbe, R. Guilard, Cobalt(III) corroles as electrocatalysts for the reduction of dioxygen: Reactivity of a monocorrole, biscorroles, and porphyrin-corrole dyads. Journal of the American Chemical Society, 127 (2005) 5625-5631.
[52] D.K. Dogutan, R. McGuire, D.G. Nocera, Electocatalytic Water Oxidation by Cobalt(III) Hangman β-Octafluoro Corroles. Journal of the American Chemical Society, 133 (2011) 9178-9180.
[53] J. Zittoun, [Anemias due to disorder of folate, vitamin B12 and transcobalamin metabolism]. Rev Prat, 43 (1993) 1358-1363.
[54] P. Vasudevan, Santosh, N. Mann, S. Tyagi, Transition metal complexes of porphyrins and phthalocyanines as electrocatalysts for dioxygen reduction. Transition Met Chem, 15 (1990) 81-90.
[55] J.H. Zagal, Metallophthalocyanines as catalysts in electrochemical reactions. Coordination Chemistry Reviews, 119 (1992) 89-136.
[56] Z. Shi, J. Zhang, Density Functional Theory Study of Transitional Metal Macrocyclic Complexes' Dioxygen-Binding Abilities and Their Catalytic Activities toward Oxygen Reduction Reaction. The Journal of Physical Chemistry C, 111 (2007) 7084-7090.
[57] F. Beck, The redox mechanism of the chelate-catalysed oxygen cathode. Journal of Applied Electrochemistry, 7 (1977) 239-245.
[58] J.P. Randin, Interpretation of the relative electrochemical activity of various metal phthalocyanines for the oxygen reduction reaction. Electrochimica Acta, 19 (1974) 83-85.
[59] L. Zhang, J. Zhang, D.P. Wilkinson, H. Wang, Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. Journal of Power Sources, 156 (2006) 171-182.
[60] S. Baranton, C. Coutanceau, C. Roux, F. Hahn, J.M. Léger, Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: tolerance to methanol, stability and kinetics. Journal of Electroanalytical Chemistry, 577 (2005) 223-234.
[61] H. Alt, H. Binder, G. Sandstede, Mechanism of the electrocatalytic reduction of oxygen on metal chelates. Journal of Catalysis, 28 (1973) 8-19.
[62] B. Koszarna, D.T. Gryko, Efficient Synthesis of meso-Substituted Corroles in a H2O−MeOH Mixture. The Journal of Organic Chemistry, 71 (2006) 3707-3717.
[63] C.A. Joseph, M.S. Lee, A.V. Iretskii, G. Wu, P.C. Ford, Substituent Effects on Nitrosyl Iron Corrole Complexes Fe(Ar3C)(NO). Inorganic Chemistry, 45 (2006) 2075-2082.
[64] H.T. Chung, C.M. Johnston, K. Artyushkova, M. Ferrandon, D.J. Myers, P. Zelenay, Cyanamide-derived non-precious metal catalyst for oxygen reduction. Electrochemistry Communications, 12 (2010) 1792-1795.
[65] K. Lee, L. Zhang, H. Lui, R. Hui, Z. Shi, J. Zhang, Oxygen reduction reaction (ORR) catalyzed by carbon-supported cobalt polypyrrole (Co-PPy/C) electrocatalysts. Electrochimica Acta, 54 (2009) 4704-4711.
[66] J.-i. Ozaki, N. Kimura, T. Anahara, A. Oya, Preparation and oxygen reduction activity of BN-doped carbons. Carbon, 45 (2007) 1847-1853.
[67] T. Okada, S. Gotou, M. Yoshida, M. Yuasa, T. Hirose, I. Sekine, A Comparative Study of Organic Cobalt Complex Catalysts for Oxygen Reduction in Polymer Electrolyte Fuel Cells. Journal of Inorganic and Organometallic Polymers, 9 (1999) 199-219.
[68] E.M. Scheuring, W. Clavin, M.D. Wirt, L.M. Miller, R.F. Fischetti, Y. Lu, N. Mahoney, A.H. Xie, J.J. Wu, M.R. Chance, Time-resolved X-ray absorption spectroscopy of photoreduced base-off Cob(II)alamin compared to the Co(II) species in Clostridium thermoaceticum. J. Phys. Chem., 100 (1996) 3344-3348.
[69] G. Givaja, M. Volpe, M.A. Edwards, A.J. Blake, C. Wilson, M. Schröder, J.B. Love, Dioxygen Reduction at Dicobalt Complexes of a Schiff Base Calixpyrrole Ligand. Angewandte Chemie International Edition, 46 (2007) 584-586.
[70] E. Askarizadeh, S.B. Yaghoob, D.M. Boghaei, A.M.Z. Slawin, J.B. Love, Tailoring dicobalt Pacman complexes of Schiff-base calixpyrroles towards dioxygen reduction catalysis. Chem. Commun., 46 710-712.
[71] S. Fukuzumi, K. Okamoto, Y. Tokuda, C.P. Gros, R. Guilard, Dehydrogenation versus Oxygenation in Two-Electron and Four-Electron Reduction of Dioxygen by 9-Alkyl-10-methyl-9,10-dihydroacridines Catalyzed by Monomeric Cobalt Porphyrins and Cofacial Dicobalt Porphyrins in the Presence of Perchloric Acid. Journal of the American Chemical Society, 126 (2004) 17059-17066.
[72] S. Fukuzumi, K. Okamoto, C.P. Gros, R. Guilard, Mechanism of Four-Electron Reduction of Dioxygen to Water by Ferrocene Derivatives in the Presence of Perchloric Acid in Benzonitrile, Catalyzed by Cofacial Dicobalt Porphyrins. Journal of the American Chemical Society, 126 (2004) 10441-10449.
[73] J.P. Collman, M. Kaplun, R.A. Decreau, Metal corroles as electrocatalysts for oxygen reduction. Dalton Transactions, (2006) 554-559.
[74] J.H. Zagal, M.J. Aguirre, M.A. Paez, O2 reduction kinetics on a graphite electrode modified with adsorbed vitamin B12. Journal of Electroanalytical Chemistry, 437 (1997) 45-52.
[75] C.-H. Wang, S.-T. Chang, H.-C. Hsu, H.-Y. Du, J.C.-S. Wu, L.-C. Chen, K.-H. Chen, Oxygen reducing activity of methanol-tolerant catalysts by high-temperature pyrolysis. Diamond and Related Materials, 20 (2011) 322-329.
[76] G. Lalande, R. Côté, G. Tamizhmani, D. Guay, J.P. Dodelet, L. Dignard-Bailey, L.T. Weng, P. Bertrand, Physical, chemical and electrochemical characterization of heat-treated tetracarboxylic cobalt phthalocyanine adsorbed on carbon black as electrocatalyst for oxygen reduction in polymer electrolyte fuel cells. Electrochimica Acta, 40 (1995) 2635-2646.
[77] J.M. Jiménez Mateos, J.L.G. Fierro, X-ray Photoelectron Spectroscopic Study of Petroleum Fuel Cokes. Surface and Interface Analysis, 24 (1996) 223-236.
[78] C.-H. Wang, H.-C. Hsu, S.-T. Chang, H.-Y. Du, C.-P. Chen, J.C.-S. Wu, H.-C. Shih, L.-C. Chen, K.-H. Chen, Platinum nanoparticles embedded in pyrolyzed nitrogen-containing cobalt complexes for high methanol-tolerant oxygen reduction activity. Journal of Materials Chemistry, 20 (2010) 7551-7557.
[79] G. Liu, X. Li, P. Ganesan, B.N. Popov, Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells. Electrochimica Acta, 55 (2010) 2853-2858.
[80] T. Ikeda, M. Boero, S.-F. Huang, K. Terakura, M. Oshima, J.-i. Ozaki, Carbon Alloy Catalysts: Active Sites for Oxygen Reduction Reaction. The Journal of Physical Chemistry C, 112 (2008) 14706-14709.
[81] H. Niwa, K. Horiba, Y. Harada, M. Oshima, T. Ikeda, K. Terakura, J.-i. Ozaki, S. Miyata, X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells. Journal of Power Sources, 187 (2009) 93-97.
[82] S. Pylypenko, S. Mukherjee, T.S. Olson, P. Atanassov, Non-platinum oxygen reduction electrocatalysts based on pyrolyzed transition metal macrocycles. Electrochimica Acta, 53 (2008) 7875-7883.
[83] M.C.M. Alves, J.P. Dodelet, D. Guay, M. Ladouceur, G. Tourillon, Origin of the electrocatalytic properties for oxygen reduction of some heat-treated polyacrylonitrile and phthalocyanine cobalt compounds adsorbed on carbon black as probed by electrochemistry and x-ray absorption spectroscopy. The Journal of Physical Chemistry, 96 (1992) 10898-10905.
[84] N. Ramaswamy, S. Mukerjee, Fundamental Mechanistic Understanding of Electrocatalysis of Oxygen Reduction on Pt and Non-Pt Surfaces: Acid versus Alkaline Media. Advances in Physical Chemistry, 2012 (2012) 17.
[85] N. Ramaswamy, U. Tylus, Q. Jia, S. Mukerjee, Activity Descriptor Identification for Oxygen Reduction on Nonprecious Electrocatalysts: Linking Surface Science to Coordination Chemistry. Journal of the American Chemical Society, 135 (2013) 15443-15449.
[86] C.-H. Wang, C.-W. Yang, Y.-C. Lin, S.-T. Chang, S.L.Y. Chang, Cobalt–iron(II,III) oxide hybrid catalysis with enhanced catalytic activities for oxygen reduction in anion exchange membrane fuel cell. Journal of Power Sources, 277 (2015) 147-154.
[87] T.M. Arruda, B. Shyam, J.S. Lawton, N. Ramaswamy, D.E. Budil, D.E. Ramaker, S. Mukerjee, Fundamental Aspects of Spontaneous Cathodic Deposition of Ru onto Pt/C Electrocatalysts and Membranes under Direct Methanol Fuel Cell Operating Conditions: An in Situ X-ray Absorption Spectroscopy and Electron Spin Resonance Study. The Journal of Physical Chemistry C, 114 (2009) 1028-1040.
[88] T.M. Arruda, B. Shyam, J.M. Ziegelbauer, S. Mukerjee, D.E. Ramaker, Investigation into the Competitive and Site-Specific Nature of Anion Adsorption on Pt Using In Situ X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C, 112 (2008) 18087-18097.
[89] M. Teliska, V.S. Murthi, S. Mukerjee, D.E. Ramaker, Correlation of Water Activation, Surface Properties, and Oxygen Reduction Reactivity of Supported Pt–M/C Bimetallic Electrocatalysts Using XAS. Journal of the Electrochemical Society, 152 (2005) A2159-A2169.
[90] M. Teliska, W.E. O'Grady, D.E. Ramaker, Determination of O and OH Adsorption Sites and Coverage in Situ on Pt Electrodes from Pt L23 X-ray Absorption Spectroscopy. The Journal of Physical Chemistry B, 109 (2005) 8076-8084.
[91] J.M. Ziegelbauer, T.S. Olson, S. Pylypenko, F. Alamgir, C. Jaye, P. Atanassov, S. Mukerjee, Direct Spectroscopic Observation of the Structural Origin of Peroxide Generation from Co-Based Pyrolyzed Porphyrins for ORR Applications. The Journal of Physical Chemistry C, 112 (2008) 8839-8849.
[92] H. Schulenburg, S. Stankov, V. Schunemann, J. Radnik, I. Dorbandt, S. Fiechter, P. Bogdanoff, H. Tributsch, Catalysts for the Oxygen Reduction from Heat-Treated Iron(III) Tetramethoxyphenylporphyrin Chloride:??Structure and Stability of Active Sites. The Journal of Physical Chemistry B, 107 (2003) 9034-9041.
[93] M. Bron, J. Radnik, M. Fieber-Erdmann, P. Bogdanoff, S. Fiechter, EXAFS, XPS and electrochemical studies on oxygen reduction catalysts obtained by heat treatment of iron phenanthroline complexes supported on high surface area carbon black. Journal of Electroanalytical Chemistry, 535 (2002) 113-119.
[94] D. Singh, J. Tian, K. Mamtani, J. King, J.T. Miller, U.S. Ozkan, A comparison of N-containing carbon nanostructures (CNx) and N-coordinated iron–carbon catalysts (FeNC) for the oxygen reduction reaction in acidic media. Journal of Catalysis, 317 (2014) 30-43.
[95] S.-H. Liu, J.-R. Wu, C.-J. Pan, B.-J. Hwang, Synthesis and characterization of carbon incorporated Fe–N/carbons for methanol-tolerant oxygen reduction reaction of polymer electrolyte fuel cells. Journal of Power Sources, 250 (2014) 279-285.
[96] D. Chu, R. Jiang, Novel electrocatalysts for direct methanol fuel cells. Solid State Ionics, 148 (2002) 591-599.
[97] S. Li, L. Zhang, J. Kim, M. Pan, Z. Shi, J. Zhang, Synthesis of carbon-supported binary FeCo-N non-noble metal electrocatalysts for the oxygen reduction reaction. Electrochimica Acta, 55 (2010) 7346-7353.
[98] W. Yang, Y. Zhang, C. Liu, J. Jia, Dual-doped carbon composite for efficient oxygen reduction via electrospinning and incipient impregnation. Journal of Power Sources, 274 (2015) 595-603.
[99] J. Zhao, H. Li, Z. Liu, W. Hu, C. Zhao, D. Shi, An advanced electrocatalyst with exceptional eletrocatalytic activity via ultrafine Pt-based trimetallic nanoparticles on pristine graphene. Carbon, 87 (2015) 116-127.
[100] S. Mitra-Kirtley, O.C. Mullins, J. Van Elp, S.J. George, J. Chen, S.P. Cramer, Determination of the nitrogen chemical structures in petroleum asphaltenes using XANES spectroscopy. Journal of the American Chemical Society, 115 (1993) 252-258.
[101] C.-H. Wang, H.-C. Huang, S.-T. Chang, Y.-C. Lin, M.-F. Huang, Pyrolysis of melamine-treated vitamin B12 as a non-precious metal catalyst for oxygen reduction reaction. RSC Advances, 4 (2014) 4207-4211.
[102] D.-S. Yang, M.Y. Song, K.P. Singh, J.-S. Yu, The role of iron in the preparation and oxygen reduction reaction activity of nitrogen-doped carbon. Chem. Commun., 51 (2015) 2450-2453.
[103] G. Wu, P. Zelenay, Nanostructured Nonprecious Metal Catalysts for Oxygen Reduction Reaction. Accounts of Chemical Research, 46 (2013) 1878-1889.
[104] R.A. Sidik, A.B. Anderson, N.P. Subramanian, S.P. Kumaraguru, B.N. Popov, O2 Reduction on Graphite and Nitrogen-Doped Graphite:  Experiment and Theory. The Journal of Physical Chemistry B, 110 (2006) 1787-1793.
[105] L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R.S. Ruoff, Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci., 5 (2012) 7936-7942.
[106] J.Y. Cheon, T. Kim, Y. Choi, H.Y. Jeong, M.G. Kim, Y.J. Sa, J. Kim, Z. Lee, T.-H. Yang, K. Kwon, O. Terasaki, G.-G. Park, R.R. Adzic, S.H. Joo, Ordered mesoporous porphyrinic carbons with very high electrocatalytic activity for the oxygen reduction reaction. Sci. Rep., 3 (2013).
[107] M. Lefevre, J.P. Dodelet, P. Bertrand, Molecular Oxygen Reduction in PEM Fuel Cells: Evidence for the Simultaneous Presence of Two Active Sites in Fe-Based Catalysts. The Journal of Physical Chemistry B, 106 (2002) 8705-8713.
[108] M. Lefèvre, J.P. Dodelet, P. Bertrand, O2 Reduction in PEM Fuel Cells: Activity and Active Site Structural Information for Catalysts Obtained by the Pyrolysis at High Temperature of Fe Precursors. The Journal of Physical Chemistry B, 104 (2000) 11238-11247.
[109] A.L. Bouwkamp-Wijnoltz, W. Visscher, J.A.R. van Veen, E. Boellaard, A.M. van der Kraan, S.C. Tang, On Active-Site Heterogeneity in Pyrolyzed Carbon-Supported Iron Porphyrin Catalysts for the Electrochemical Reduction of Oxygen:  An In Situ Mössbauer Study. The Journal of Physical Chemistry B, 106 (2002) 12993-13001.
[110] R. Chen, H. Li, D. Chu, G. Wang, Unraveling Oxygen Reduction Reaction Mechanisms on Carbon-Supported Fe-Phthalocyanine and Co-Phthalocyanine Catalysts in Alkaline Solutions. The Journal of Physical Chemistry C, 113 (2009) 20689-20697.
[111] J. Guo, H. He, D. Chu, R. Chen, OH−-Binding Effects on Metallophthalocyanine Catalysts for O2 Reduction Reaction in Anion Exchange Membrane Fuel Cells. Electrocatalysis, 3 (2012) 252-264.

無法下載圖示 全文公開日期 2021/02/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE