簡易檢索 / 詳目顯示

研究生: 陳振淵
Cheng-Yuan Chen
論文名稱: 高可用性醫療決策支援視覺系统
High-Availability Visualization System for Medical Decision Support
指導教授: 蔡孟涵
Meng-Han Tsai
口試委員: 楊亦東
I-Tung Yang
康仕仲
Shih-Chung Kang
學位類別: 碩士
Master
系所名稱: 工程學院 - 高階科技研發碩士學位學程
Executive Master of Research and Development
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 86
中文關鍵詞: 行動巡房決策支援高可用性視覺化
外文關鍵詞: Ward Rounds, Decision Support, High-Availability, Visualization
相關次數: 點閱:339下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究整理過去12年國泰醫院在行動醫療資訊整合系統(iMMIS)的開發歷程,目標是在醫療團隊住院巡房過程中,改善傳統紙本病歷及電子化病歷(HIS)的攜帶不便、查詢不易、無效率等缺點,來達到在任何時間、任何地點、任何行動載具均可輕易使用的優點。並探討視覺化設計準則,響應式設計的好處,在時間壓力下如何做出快速決策,擬定治療計畫,及軟體開發流程,來尋找因應醫療產業快速變遷的特性下的適用架構,從使用者需求與回饋的功能性出發,以「系統設計」、「開發整合」及「導入應用」的相互循環流程架構來說明其成功的方法。
「系統設計」包含軟硬體系統的高可用性、系統發展、功能及介面設計。結合醫療團隊的領域知識,以醫師及病人為中心的視覺介面設計,將結構及非結構資料整合在16個主功能及84項子功能中。
「開發整合」包含開發歷程、系統測試、系統整合。系統採取三層式架構開發,直接讀取HIS及PACS資料庫來避免資訊落差,過濾有用的資料來減少人工分類資訊的時間,以圖形介面來顯示整合多系統的龐雜資料,利用視覺化色彩區隔來減少醫師誤讀資料的風險,以決策輔助來達成病人治療計畫的擬定,增進病人安全。
「導入應用」包含流程再造、案例應用及效益評估。系統導入是一連串快速變化的迭代過程,系統導入前,查詢一位病人資料需耗費11個步驟24分鐘,系統導入後,僅需6個步驟約4分鐘,此外也能協助每天需耗6.7小時幾乎無法收案的疾病,到能36秒快速收案,提供安全性照護服務。
當醫師透過iMMIS系統進行巡房時,病人的醫療資訊隨手可得,透過系統的快速回應需求、決策支援輔助等特性,可減少資料查詢時間,並提高與病人互動及說明的方式,提供病人更多的病解及關懷服務,此無形的效益也讓醫病關係更和諧。國泰醫院研發的行動醫療資訊整合系統已運用在住院巡房、各科晨會、病歷討論會、病歷教學、個案討論、門診、急診看診等輔助,已成為國泰醫院醫療團隊在每天工作中最依賴的隨身系統。本研究進行國泰醫院的iMMIS系統開發及應用回顧,除了對國泰醫院的醫療人員及研發人員有益外,此經驗亦可提供從事醫療行動系統研發的相關產業做為參考,共同提升整體醫療環境與品質的發展。


This study compiles the 12 years development history of Cathay General Hospital on Integrated Mobil Medical Information System (iMMIS). The target is to improve the weaknesses of traditional paper records and electronic medical records (HIS) in the difficult of carrying, query and inefficiency during the ward rounds to achieve the advantage of easy access at any time, any place and on any mobile device. We explore the standard criteria of Visualization Design and the benefit of Responsive Web Design; how to make swift decisions, draw up treatment plan, and software development process under time pressure. Seeking suitable architecture that copes the rapid change in medical industry; setting out from the needs of the users and the feedback functionality and uses the mutual circulate process architecture of “System Design”, “Development Integration”, and “Application Implementation” to illustrate its method of success.
“System Design” includes high availability of hardware and software system, system development, function and interface design. It combines the knowledge of the medical team, centers the visualization interface design on physicians and patients, and integrates architectural and non-architectural data into 16 main functions and 84 sub-functions.
“Development Integration” includes development history, system testing, and system integration. The system development adopts 3-tier architecture, reading directly from HIS and PACS database to avoid information gap, filtering useful data to reduce manual sorting time. It displays the integration of huge data of multiple systems with graphic interface and uses visualization color segregation to reduce the risks of physicians’ miss-reading the data; achieving the draw up of the patient treatment plan through the decision making to enhance safety.
“Application Implementation” includes process reengineering, case application and benefit assessment. System implementation is a series of iterative process of rapid change. Prior to system implementation, query on the data of one patient takes 11 steps for 24 minutes. After implementation, it only takes 6 steps for about 4 minutes. It also helps the diseases that used to take up to 6.7 hours and almost could be not enrolled to be quickly enrolled in 36 seconds, providing safe care service.
When a physician makes round through iMMIS system, patients’ medical data is at hand; with the features of swift response to needs and assisting decision making, the system reduces data query time, elevates interaction with patients, provides more disease explanation and care. This invisible benefit makes the relationship between physician and patient more harmonious. iMMIS developed by Cathay General Hospital has been applied in assisting the ward rounds, morning meetings of each department, medical record discussion, teaching, case study, visits in out-patient department and emergency service department; it has become the most depended daily work portable system of the Cathay medical team. This study reviews the iMMIS system development and application of Cathay General Hospital. It not only benefits Cathay General Hospital medical and R&D personnel, the experience also provides reference for relevant industries engaging in mobile medical system R&D to elevate the development of overall medical environment and quality together.

摘要 i ABSTRACT ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第1章 緒論 1 1.1. 研究背景 1 1.2. 電子病歷的緣起與挑戰 2 1.3. 研究對象 5 1.4. 研究目的 7 第2章 文獻探討 8 2.1. 視覺化 8 2.2. 響應式設計 10 2.3. 決策支援 11 2.4. 資訊軟體開發流程介紹 12 2.4.1. 瀑布流程 13 2.4.2. 迭代流程 15 第3章 研究方法 17 3.1. 國內行動醫療系統開發模式 17 3.2. 制定開發原則 19 3.3. 導入開發流程 20 第4章 系統設計 22 4.1. 系統需具高可用性 22 4.1.1. 主機系統不中斷 22 4.1.2. 網路的高可靠度 23 4.1.3. 軟體系統的高可靠度 24 4.2. 系統發展 25 4.2.1. 系統原型開發 25 4.2.2. 行動醫療資訊整合系統發展 26 4.3. 功能設計 29 4.4. 介面設計 33 第5章 開發整合 35 5.1. 開發歷程 35 5.2. 系統測試 41 5.3. 資料整合 44 第6章 導入應用 47 6.1. 流程再造 47 6.2. 案例應用 51 6.2.1. 視覺化整合-以神經評估表為例 51 6.2.2. 協助醫療團隊收案及溝通(糖尿病管理) 53 6.3. 效益評估 60 6.3.1. 系統使用情況 60 6.3.2. 滿意度調查 61 第7章 討論與建議 64 7.1. 使用者的回饋 64 7.2. 研究發現 66 7.3. 後續研究建議 68 第8章 結論 70 參考文獻 73

Almansoori, W., Murshid, A., Xylogiannopoulos, K. F., Alhajj, R., & Rokne, J. (2012). Electronic medical referral system: Decision support and recommendation approach. Paper presented at the 2012 IEEE 13th International Conference on Information Reuse & Integration (IRI), pp. 572-577, doi: 10.1109/IRI.2012.6303060.

Basil, V. R., & Turner, A. J. (1975). Iterative enhancement: A practical technique for software development. IEEE Transactions on Software Engineering, SE-1(4), 390-396.

Dolan, B. (2009). Physician Smartphone Adoption Rate to Reach 81% in 2012. Retrieved from https://www.mobihealthnews.com/4740/physician-smartphone-adoption-rate-to-reach-81-in-2012, access date: 20211101

Chittaro, L. (2001). Information visualization and its application to medicine. Artificial Intelligence in Medicine, 22(2), 81-88. doi:10.1016/S0933-3657(00)00101-9

Eichler, A., Böcherer-Linder, K., & Vogel, M. (2020). Different Visualizations Cause Different Strategies When Dealing With Bayesian Situations. Frontiers in Psychology, 11. doi:10.3389/fpsyg.2020.01897

Ethan Marcotte (2010, May 25). Responsive Web Design. Retrieved from https://alistapart.com/article/responsive-web-design/, access date: 20211101

Hugine, A. L., Guerlain, S. A., & Turrentine, F. E. (2014). Visualizing surgical quality data with treemaps. Journal of Surgical Research, 191(1), 74-83. doi:10.1016/j.jss.2014.03.046

Jalote, P., Palit, A., Kurien, P., & Peethamber, V. T. (2004). Timeboxing: a process model for iterative software development. Journal of Systems and Software, 70(1), 117-127. doi:10.1016/S0164-1212(03)00010-4

Kawamoto, K., Houlihan, C. A., Balas, E. A., & Lobach, D. F. (2005). Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. British Medical Journal, 330(7494), 765. doi:10.1136/bmj.38398.500764.8F

McCormick, M. (2012). Waterfall vs. Agile methodology. MPCS, Inc. Retrieved from http://mccormickpcs.com/images/Waterfall_vs_Agile_Methodology.pdf, access date: 20220309

Midway, S. R. (2020). Principles of Effective Data Visualization. Patterns, 1(9), 100141. doi:10.1016/j.patter.2020.100141

Nirapai, A., Wongkamhang, A., Saosuwan, R., Sangworasil, M., Matsuura, T., & Thongpance, N. (2017). A Case Study of the Development of PM Software Management System for biomedical Equipment Used in Srisawan Hospital. Paper presented at the RSU International Research Conference, 162-169. doi:10.14458/RSU.res.2017.21

Parnas, D. L., & Clements, P. C. (1986). A rational design process: How and why to fake it. IEEE Transactions on Software Engineering, SE-12(2), 251-257. doi:10.1109/tse.1986.6312940

Pereboom, M., Mulder, I. J., Verweij, S. L., van der Hoeven, R. T., & Becker, M. L. (2019). A clinical decision support system to improve adequate dosing of gentamicin and vancomycin. International journal of medical informatics, 124, 1-5. doi: 10.1016/j.ijmedinf.2019.01.002

Quesenbery, W. (2001). What does usability mean: Looking beyondease of use. Paper presented at the 48th Annual conference-society for technical communication, Chicago, 13-16 May 2001.

Quesenbery, W. (2003). Dimensions of Usability: Defining the Conversation, Driving the Process. Paper presented at UPA 2003 Conference, 23-27 June 2003.

Rastogi, V. (2015). Software development life cycle models-comparison, consequences. International Journal of Computer Science and Information Technologies, 6(1), 168-172.

Rothman, B., Leonard, J. C., & Vigoda, M. M. (2012). Future of Electronic Health Records: Implications for Decision Support. Mount Sinai Journal of Medicine, 79(6), 757-768. doi:10.1002/msj.21351

Sanchez, E., Toro, C., Carrasco, E., Bonachela, P., Parra, C., Bueno, G., & Guijarro, F. (2011). A Knowledge-based Clinical Decision Support System for the diagnosis of Alzheimer Disease. Paper presented at the 2011 IEEE 13th International Conference on e-Health Networking, Applications and Services, 351-357, doi: 10.1109/HEALTH.2011.6026778

Serban, A., Crisan-Vida, M., Mada, L., & Stoicu-Tivadar, L. (2016). User Interface Design in Medical Distributed Web Applications. Paper presented at the eHealth, 223-229. doi:10.3233/978-1-61499-645-3-223

Shortliffe, E. H. (2006). Biomedical Informatics: Computer Applications in Health Care and Biomedicine. Springer, ISBN: 1447144732.

Shylesh, S. (2017). A study of software development life cycle process models. Paper presented at the National Conference on Reinventing Opportunities in Management, IT, and Social Sciences, 10 June 2017. doi:10.2139/ssrn.2988291

Sommerville, I. (2004). Software Engineering: Pearson/Addison-Wesley.

Stone, D., Jarrett, C., Woodroffe, M., & Minocha, S. (2005). User interface design and evaluation: Elsevier.

Tang, R., Yao, H., Zhu, Z., Sun, X., Hu, G., Li, Y., & Xie, G. (2021). Embedding Electronic Health Records to Learn BERT-based Models for Diagnostic Decision Support. Paper presented at the 2021 IEEE 9th International Conference on Healthcare Informatics (ICHI), 311-319, doi:10.1109/ICHI52183.2021.00055

Verber, D., Novak, D., Borovič, M., Dugonik, J., & Flisar, D. (2020). EQUIDopa: A responsive web application for the levodopa equivalent dose calculator. Computer Methods and Programs in Biomedicine, 196, 105633. doi:10.1016/j.cmpb.2020.105633

徐俊生, 陳香君, 蕭燦生, 張仁治 & 張有燈 (2020). 智慧大數據分析工具於醫院藥費管理互動式視覺化之應用. [Interactive Visual Analysis of Medicine Cost Management in a Hospital Using Excel Power Business Intelligence]. 臺灣臨床藥學雜誌, 28(2), 94-109. doi:10.6168/fjcp.202004_28(2).0003

徐嫦娥 & 簡郁沛 (2010). 電子病歷之發展及法規政策. [Development of Electronic Medical Records, Regulations and Policies]. 病歷資訊管理, 9(2), 1-18. doi:10.29741/jmhim.201006.0001

鄭逸寧(2011) 秀傳醫院導iPad簡化醫師巡房, Retrieved from https://www.ithome.com.tw/news/67856, 存取日期:20211103

無法下載圖示 全文公開日期 2024/06/15 (校內網路)
全文公開日期 2025/06/15 (校外網路)
全文公開日期 2025/06/15 (國家圖書館:臺灣博碩士論文系統)
QR CODE