簡易檢索 / 詳目顯示

研究生: 洪銘鴻
Hung-ming Hung
論文名稱: 土壤水分特性曲線應用於不飽和崩積土壤邊坡穩定分析之研究
Stability Analysis of Unsaturated Colluvium Soil Slope Using Soil-Water Characteristic Curve
指導教授: 林宏達
Horn-Da Lin
口試委員: 褚炳麟
none
白朝金
none
陳志南
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 190
中文關鍵詞: 石門水庫砂崙仔崩塌地崩積土壤土壤水分特性曲線降雨入滲分析浸潤帶XRDSEM總凝聚力模式
外文關鍵詞: colluvium soil, soil-water characteristic curve, rainfall infiltration analyses, wetting-front, SEM
相關次數: 點閱:355下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

國內水庫集水區發生崩塌之邊坡大多被不飽和崩積土壤所覆蓋,乾季時存在著基質吸力維持邊坡穩定。降雨之雨水入滲使得崩積土壤因飽和而失去基質吸力,進而產生淺層崩塌。本研究選取石門水庫砂崙仔崩塌地附近的崩積土壤作為試驗之土樣,進行了一系列的室內、現地及土壤水分特性曲線(SWCC)試驗,以瞭解同一集水區內不同位置崩積土壤的巨、微觀特性。接著應用SWCC來推求不飽和剪力強度參數,再以STEDwin 2.64程式進行降雨入滲對邊坡穩定影響之分析。另外,本研究也初步研製一套應力相依土壤水分特性試驗儀,以便後續研究應力狀態對於SWCC之影響時使用。
試驗結果顯示,同一集水區內崩積土壤的土壤礦物皆以伊利石為主,且成份含量百分比趨勢略同;重模崩積土及原狀殘積紅土之保水能力比原狀崩積土來得佳。邊坡穩定分析結果顯示,安全係數隨降雨浸潤帶的加深而下降,而潛在滑動面則隨浸潤帶加深而上移。因此,降雨浸潤帶是造成不飽和崩積土壤邊坡產生淺層滑動破壞的最重要因子。


Former studies have indicated that unstable slope locating near the watershed of a reservoir is often covered by unsaturated colluvium soils. During the dry season, high matric suction exists in the ground and maintains its stability. However, after rainfall the collapse of soil slope can occur due to infiltration and saturation of the surface soils. In order to understand the colluvium soil characteristics including both macroscopic and microscopic properties, this study adopts the colluvium soil samples nearby the Sha Lun Tsai landslide area in Shihmen reservoir. The variation of soil characteristics is investigated by samples taken from different location. A series of experiments including both field and lab tests were conducted. The soil water characteristic curve (SWCC) was used to estimate the unsaturated shear strength parameters. The slope stability analyses were, then, performed using STEDwin 2.64 program at various rainfall infiltration levels. In addition, this study also preliminary develops a set of stress-dependent SWCC equipment for future study to evaluate the effect of stress state on the SWCC.
The test results exhibit that the colluvium soil samples of the same watershed mainly contain illite mineral with similar percentage of content. Moreover, the water retention capacity of the remold colluvium soil and undisturbed residual soil is better than that of the undisturbed colluvium soil. Slope stability analyses indicated that the factor of safety decreases with the increase in rainfall infiltration depth, and the potential slip surface becomes shallower when the infiltration depth increases. Therefore, it can be concluded that the “wetting-front” of rainfall infiltration is the most essential factor that can induce shallow slip failure of the colluvium soil slope.

論 文 摘 要 誌 謝 目 錄 表目錄 圖目錄 第一章 緒論 1.1 研究動機與目的 1.2 研究內容與流程 第二章 文獻回顧 2.1 崩積土壤 2.1.1 崩積土壤之定義 2.1.2 崩積土壤之工程特性 2.2 不飽和土壤之吸力行為 2.2.1 不飽和土壤 2.2.2 不飽和土壤總吸力 2.2.3 不飽和土壤基質吸力 2.3 土壤水分特性之關係 2.3.1 土壤水分特性曲線 2.3.2 崩積土壤之土壤水分特性曲線 2.3.3 應力相依土壤水分特性 2.4 不飽和土壤邊坡降雨入滲之穩定性分析 2.4.1 不飽和土壤廣義Mohr-Coulomb破壞準則 2.4.2 降雨入滲範圍之界定 2.4.3 不飽和土壤邊坡之穩定性分析 第三章 應力相依土壤水分特性儀之初步研製 3.1 初步構想 3.2 儀器設備 3.3 高進氣吸力值陶瓷板之功用 3.4 密封型壓力室及試體盒之設計 第四章 試驗計畫、儀器與方法 4.1 試驗土樣來源及地理環境簡介 4.2 試驗計畫 4.3 土壤基本物理性質試驗 4.4 土壤礦物成分分析試驗 4.4.1 X-Ray繞射試驗(XRD)原理及試體準備 4.4.2 掃描式電子顯微鏡試驗(SEM)原理及步驟 4.5 工地密度試驗 4.6 土壤水分特性試驗 4.6.1 壓力平板試驗儀器 4.6.2 壓力平板試驗方法 第五章 試驗結果分析與討論 5.1 土壤基本物理性質試驗結果 5.2 土壤礦物成分試驗結果 5.2.1 XRD試驗分析 5.2.2 SEM試驗分析 5.2.3 礦物成分試驗綜合討論 5.3 現地密度試驗結果 5.4 土壤水分特性試驗結果 第六章 不飽和崩積土壤邊坡穩定分析 6.1 砂崙仔崩塌地概述 6.2 不飽和土壤邊坡穩定分析模型之設計 6.2.1 分析模型建立 6.2.2 分析條件訂定 6.2.3 分析程式選定 6.3 不飽和土壤剪力強度分析參數之求取 6.3.1 以土壤水分特性曲線推估不飽和土壤剪力強度理論 6.3.2 總凝聚力分析參數之求取 6.3.3 邊坡穩定分析剪力強度參數設定 6.4 分析結果與討論 第七章 結論與建議 7.1 結論 7.2 建議 參考文獻 附 錄 A

1.王鑫、楊建夫、許玲玉(1984),「中橫公路道路邊坡的地貌分析」,行政院國家科學委員會防災科技研究報告74-48號。
2.田凱丞(2008) ,「非飽和土壤光纖感測三軸試驗裝置之研發與應用」,國立交通大學土木工程系,碩士論文。
3.行政院農業委員會水土保持局台北分局(2009),「砂崙仔崩塌區崩塌潛勢調查分析及監測」,期中報告書。
4.林宏達、拱祥生 (2001),「不飽和土壤力學性質試驗及其在邊坡工程之運用」,地工技術,第83期,第39-52頁。
5.林宏達、拱祥生、吳宏偉(2003),「不飽和土壤邊坡基質吸力量測及其在邊坡穩定分析之應用」,地工技術,第96期,第27-42頁。
6.林鴻彰(2008),「不飽和土壤邊坡基質吸力與位移之監測及邊坡穩定分析」,國立台灣科技大學營建工程系,碩士論文。
7.拱祥生(1999),「降雨對不飽和土壤邊坡穩定性之影響研究」,國立台灣科技大學營建工程系,碩士論文。
8.洪如江、詹勳山、楊彰文、何鏗鏘、魏烈舫、陳振才、鄭在仁、馬灼津、陳煌銘(1978),「複合土工程性質之初步研究」,國立台灣大學工程學刊,第二十三期,第1-12頁。
9.洪如江(1979),「環境因素在台灣山崩中之應用」,邊坡穩定與坍方研討會論文專集,中國土木水利工程學會,第147-172頁。
10.陳尚奕(2009),「粒徑分佈狀況對不飽和崩積土壤吸力之研究」,國立台灣科技大學營建工程系,碩士論文。
11.陳爾義(2002),「地下水浸潤及滲流對崩積土邊坡穩定影響之探討」,國立海洋大學河海工程系,碩士論文。
12.陳珮玉(2009),「崩積土不排水剪力強度之研究」,華梵大學環境與防災設計學系,碩士論文。
13.陳威祥(2005),「崩塌地三維地形調查與其土壤特性參數之研究-以新竹縣五峰鄉土場部落為例」,東南技術學院防災科技研究所,碩士論文。
14.許正輝(2005),「降雨滲流對集水區邊坡穩定之影響探討」,國立海洋大學河海工程系,碩士論文。
15.鄭清江、褚炳麟、林泰安(2007),「華梵校區非飽和崩積土坡現地監測與原樣式內試驗」,第十二屆大地工程研討會,溪頭,第A1-46-01~ A1-46-011頁。
16.鄭清江、譚志豪、鐘明劍、李錦發、費立沅(2009),「莫拉克降雨引致高屏地區邊坡淺層崩塌災害勘查與穩定行數值分析案例」,地工技術,第122期,第133-142頁。
17.蔡光榮(1985),「中橫公路土石堆之穩定分析研究」,行政院國家科學委員會防災科技研究報告。
18.蔡孟棻(2005),「以土壤水份特性曲線評估不飽和土壤邊坡穩定性」,國立台灣科技大學營建工程系,碩士論文。
19.賴世偉(2006),「不安定指數法應用於石門水庫集水區崩塌潛感分析之研究」,國立中興大學水土保持學系所,碩士論文。
20.謝敬義(1981),「中橫公路67K崩塌區坡面穩定調查與分析研究報告」,中國土木水利工程學會會刊,土木水利第八卷,第6-18頁。
21.蘇英智(2000),「梨山地滑穩定性即時分析系統之建立」,國立中興大學土木工程學系,碩士論文。
22.龔壁衛、吳宏偉、王斌(2004),「應力狀態對膨脹土SWCC的影響研究」,岩土力學,第二十五卷,第12期,第1915-1918頁。
23.Bear, J. (1979), Hydraulics of Groundwater, McGraw-hill, USA.
24.Croney, D. and Coleman, J. D. (1948), “Soil Thermodynamic Applied to the 7Movement of Moisture in Road Foundations”, Proc. 7th Int. Cong. Appl. Mech., Vol.3, pp. 163-177.
25.Fredlund, D. G. and Morgenstern, N. R. (1977), “Stress State Variables for Unsaturated Soil”, Journal of Geotechnical Engineering, ASCE, GT5, Vol. 103, pp. 446-447.
26.Fredlund, D. G., and Morgenstern, N. R. (1978), “The Shear Strength of Unsaturaed Soils”, Canadian Geotechnical Journal, Vol. 15, No. 3, pp. 313-321.
27.Fredlund, D. G. and Rahardjo, H. (1993), Soil Mechanics for Unsaturated Soils, John Wiley, New York.
28.Fredlund, D. G. and Xing, A. (1994), “Equation for the Soil-Water Characteristic Curve”, Canadian Geotechnical Journal, Vol. 31, pp. 521-532.
29.Feuerhaemel C., Gehling W.Y.Y. and Bica A.V.D. (2006), “The Use of Filter-Paper and suction-Plate Methods for Determining the Soil-Water Characteristic Curve of Undisturbed Colluvium Soils”, Geotechnical Testing Journal, Vol. 29, No. 5, pp. 1-7.
30.Gee, G. W., Ward, A. L., Zhang, Z. F., Campbell, G. S. and Mathison, J. (2002), “The Influence of Hydraulic Nonequilibrium on Pressure Plate Date”, Vadose Zone J. 1, pp. 172-178.
31.Hilf, J. W. (1956), “An Investigation of Pore-Water Pressure in Compacted Cohesive Soils”, Ph. D. Dissertation, Tech. Memo. No. 654, U. S. dep. of the Interior, Bureau of Reclamation, Design and Construction Div., Denver, CO, pp. 654.
32.Ho, D. G. and Fredlund, D. G. (1982), “A Multistage Triaxial Test for Unsaturated Soils”, Geotechnical Testing Journal, Vol. 5, No. 1, pp. 18-28.
33.Krahn, J. and Fredlund, D. G. (1972), “On Total Matric and Osmotic Suction ”, J. Soil Science, Vol. 114, No. 5, pp. 339-348.
34.K. M. Y. Ho, C. W. W. Ng, K. K. S. Ho and W. H. Tang (2006), “State-dependent Soil-Water Characteristic Curves (SDSWCCs) of Weather Soils”, Proceedings of the 4th International Conference on Unsaturated Soils, Arizona, pp. 1302-1313.
35.Lumb, P. (1975), “Slope Failures in Hong Kong”, Quarterly Journal Engineering Geology, Vol. 8, pp. 31-65.
36.Lambe, T. W. and Whitman, R. V. (1979), Soil Mechanics, 2nd Edition. Wiley, New York.
37.Lambe, T. W. (1985), “The Engineering Behavior of Compacted Clay”, Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 84, SM2, Paper no. 1655, pp. 1-35.
38.Lu, N. and Likos, W. J. (2004), Unsaturated Soil Mechanics, John Wiley and Sons.
39.L. R. Hoyos, P Takkabutr and A. J. Puppala (2006), “A Modified Pressure Plate Device for SWCC Testing Under Anisotropic Stress States”, Proceedings of the 4th International Conference on Unsaturated Soils, Arizona, pp. 1753-1763.
40.Mitchell, J. K. and Soga, K. (2005), Fundamentals of Soil Behavior, 3rd Edition, John Wiley & Sons, Inc.
41.Ng, C. W. W. and Pang, Y. W. (2000a), “Influence of Stress State on Soil-Water Characteristics and Slope Stability”, Journal of Geotechnical and Geo-environmental Engineering, ASCE, Vol. 126, No. 2, pp. 157-166.
42.Ng, C. W. W. and Pang, Y. W. (2000b), “Experimental Investigation of The Soil-Water Characteristics of A volcanic soil”, Canadian Geotechnical Journal, Vol. 37, No. 6, pp. 1252-1264.
43.Ng, C. W. W. and Chen, R. (2005), “Advanced Suction Control Techniques for Testing Unsaturated Soils (in Chinese)”, Keynote Lecture, 2nd Nat. Conf. on Unsat. Soils, Hangzhou, China, Zhejiang University Press, pp147-167.
44.Natalia Perez-Garcia, Sandra L. Houston, William N. Houston and J. Manuel Padilla (2008), “An Oedometer-Type Pressure Plate SWCC Apparatus”, Geotechnical Testing Journal, Vol. 31, No. 2, pp. 1-9.
45.Perera, Y. Y. (2003), “Moisture Equilibria Beneath Paved Areas”, Ph. D. Dissertation, Arzona State University.
46.SoilVisionTM A Knowledge-Based Soils Database User’s Manual.
47.Terzaghi, K. (1936), “The Shear Resistance of Saturated Soil”, in Proc. 1st Int. Conf. Soil Mech. Found. Eng. (Cambridge, MA), Vol. 1, pp. 54-56.
48.Vanapalli, S. K., Pufahl, D. E. and Fredlund, D. G. (1998), “The Effect of Stress State on The Soil-Water Characteristic Behavior of A Compacted Sandy-clay Till“, Proc. Canadian Geotechnical Conference, pp. 81-86.
49.Vanapalli, S. K., Fredlund, D. G. and Pufha, D. E. (1999), “The Influence of Soil Structure and Stress History on The Soil-Water Characteristic of A Compacted Till“, Vol. 49, No. 2, pp. 143-159.
50.Vanapalli, S. K., Fredlund, D. G., Pufha, D. E. and Clifton, A.W. (1999) “Model for Prediction of Shear Strength with Respect to Soil Suction“, Canadian Geotechnical Journal, Vol. 33, pp. 379-392.
51.Vanapalli, S. K. and Fredlund, D. G. (2000) “Comparison of Different Procedures to Predict Unsaturated Soil Shear Strength“, ASTM Proceedings, Unsaturated Soils, Geo-Danver 2000, August 3-8.

QR CODE