研究生: |
SEPTILA RENATA SEPTILA - RENATA |
---|---|
論文名稱: |
SILVER and Ag@Au CORE SHELL SERS NANOTAGS for BREAST CANCER DETECTION SILVER and Ag@Au CORE SHELL SERS NANOTAGS for BREAST CANCER DETECTION |
指導教授: |
黃炳照
Bing-Joe Hwang |
口試委員: |
蘇威年
Wei-Nien Su 周宏隆 Hung-Lung Chou 張君照 Chun-Chao Chang |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 化學工程系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 83 |
中文關鍵詞: | 銀奈米粒子 、Ag@Au 奈米粒子 、表面增強拉曼散射奈米標靶 、HER2抗體 、乳癌 |
外文關鍵詞: | Ag NPs, Ag@Au NPs, SERS nanotags, HER2 antibody, breast cancer |
相關次數: | 點閱:700 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面增強拉曼散射光譜為對生化與化學分析具有極佳靈敏性與選擇性之工具。奈米標靶可增強目標物的拉曼散射訊號,因為拉曼標籤產生的拉曼光譜可用來鑑定生化分子間的作用。而金屬表面可用來增強拉曼散射訊號於超靈敏偵測上之應用。
在本研究中,吾人使用R6G染料分子當拉曼標籤,以Ag 與Ag@Au為拉曼基材,接著以二氧化矽將其包覆。銀奈米粒子以晶種成長法來合成,其粒徑約為30-40奈米之間;而Ag核Au殼之Ag@Au奈米粒子藉由金屬置換反應來合成,其Au殼層非常均勻地包覆住Ag核。將R6G拉曼標籤置於合成之奈米金屬表面上,接著利用修飾stober 法將二氧化矽均勻包覆於有R6G吸附之奈米金屬粒子上。二氧化矽之厚度約為1.5奈米。二氧化矽表面首先接上胺基與羧基,然後再以EDC 和 NHS活化其表面。 SERS奈米標靶與HER抗體結合可應用於乳癌細胞之檢測上。
表面增強拉曼散射光譜顯示Au奈米粒子的增強效應比Ag@Au更佳。二氧化矽的包覆會減弱拉曼表面增強的效應。SERS奈米標靶表面修飾之目的為使HER2抗體的吸附更加穩定。此SERS奈米標靶與HER2抗體的結合目的在於檢測乳癌細胞之HER2狀態。HER2抗體可用來捕抓於乳癌細胞表面之HER2受體。
Surface-enhanced Raman Scattering (SERS) spectroscopy is a highly sensitive and selective tool for the identification of biological and chemical analytes based on the SERS effect of nanostructured metal surfaces. SERS nanotags introducing Raman label compounds onto noble metal (Ag NPs and Ag@Au NPs). SERS nanotags can enhance the Raman scattering signal of targets because Raman label generates the Raman spectral signature used to identify a biomolecular interaction (chemical enhancement), whereas the metal nanostructure is used to amplify the Raman scattering signal for ultrasensitive detection (electromagnetic enhancement).
In this research synthesis of SERS nanotags consist of rhodamine 6G as Raman label, Ag and Ag@Au as Raman substrate, then encapsulated with silica. Silver nanoparticles were synthesis using seed-growth method and produced particle size 30 - 40 nm, while Ag@Au nanoparticles were synthesis using galvanic replacement reaction, resulted very thin and uniform gold shell around silver core. SERS nanotags were synthesized by placing rhodamine 6G as Raman label to nanoparticles (Ag and Ag@Au). The encapsulation SERS nanotags with silica were performed by the modified Stober method, and resulted in a silica shell of 1.5 nm thickness. The surface of silica was first anchored by amine and carboxyl groups and then activated by EDC and NHS molecules. SERS Nanotags, which had been conjugated with HER2 antibody, applied to the detection of breast cancer cell.
SERS spectroscopy shows that Ag NPs give higher enhancement than Ag@Au NPs. Nevertheless, encapsulation also decreases the enhancement effect of SERS, especially in Ag SERS nanotags because part of laser excitation is scattered before they arrive to the surface of silver. The aim of SERS nanotags surface modification is to yield stable amine bond which can be well bioconjugated with HER2 antibody.
HER2 antibody is used to capture HER2 receptor on the surface of breast cancer cells, so that an early and precise detection of HER2 status of breast cancer calls can be realized in near future.
1. Tegart, G., Critical issues in the commercialization of nanotechnologies. Innovation: Management, Policy & Practice, 2006. 8(4): p. 338-347.
2. Liz-Marzan, L.M., Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles. Langmuir, 2005. 22(1): p. 32-41.
3. Kong, X., et al., Synthesis and application of surface enhanced Raman scattering (SERS) tags of Ag@SiO2 core/shell nanoparticles in protein detection. Journal of Materials Chemistry, 2012. 22(16): p. 7767-7774.
4. Jun, B.-H., et al., Multifunctional Silver-Embedded Magnetic Nanoparticles as SERS Nanoprobes and Their Applications. Small, 2010. 6(1): p. 119-125.
5. Gong, J.-L., et al., Ag/SiO2 core-shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools. Biosensors and Bioelectronics, 2007. 22(7): p. 1501-1507.
6. Kim, J.-H., et al., Nanoparticle Probes with Surface Enhanced Raman Spectroscopic Tags for Cellular Cancer Targeting. Analytical Chemistry, 2006. 78(19): p. 6967-6973.
7. Yang, J., et al., Distinguishing breast cancer cells using surface-enhanced Raman scattering. Analytical and Bioanalytical Chemistry, 2012. 402(3): p. 1093-1100.
8. McFarland, A.D. and R.P. Van Duyne, Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Letters, 2003. 3(8): p. 1057-1062.
9. Felba, J., et al. The influence of thermal process on electrical conductivity of microstructures: Made by ink-jet painting with the use of ink containing nano sized silver particles. in Nanotechnology, 2009. IEEE-NANO 2009. 9th IEEE Conference on. 2009.
10. Jiang, Z.-J., C.-Y. Liu, and L.-W. Sun, Catalytic Properties of Silver Nanoparticles Supported on Silica Spheres. The Journal of Physical Chemistry B, 2005. 109(5): p. 1730-1735.
11. Jain, P. and T. Pradeep, Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnology and Bioengineering, 2005. 90(1): p. 59-63.
12. Aliev, G., et al., Silver nanoparticles as alternate strategies for drug delivery to Alzheimer brain. Alzheimer's & dementia : the journal of the Alzheimer's Association, 2009. 5(4): p. P324.
13. Park, J., et al., Synthesis of Monodisperse Spherical Nanocrystals. Angewandte Chemie International Edition, 2007. 46(25): p. 4630-4660.
14. Cao, G., Nanostructures & nanomaterials : synthesis, properties & applications. 2004, London :: Imperial College Press ;.
15. Cushing, B.L., V.L. Kolesnichenko, and C.J. O'Connor, Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles. Chemical Reviews, 2004. 104(9): p. 3893-3946.
16. Malik, M.A., M.Y. Wani, and M.A. Hashim, Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arabian Journal of Chemistry, 2012. 5(4): p. 397-417.
17. Semagina, N. and L. Kiwi-Minsker, Recent Advances in the Liquid-Phase Synthesis of Metal Nanostructures with Controlled Shape and Size for Catalysis. Catalysis Reviews, 2009. 51(2): p. 147–217.
18. Roy, A. and J. Bhattacharya, Microwave-assisted Synthesis and Characterization of CaO Nanoparticles. International Journal of Nanoscience, 2011. 10(03): p. 413-418.
19. Kumar, R.V., Y. Diamant, and A. Gedanken, Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates. Chemistry of Materials, 2000. 12(8): p. 2301-2305.
20. Rajesh, R.N., et al., Biomimetic synthesis and patterning of silver nanoparticles, 2002, Nature Publishing Group.
21. Kroger, N., R. Deutzmann, and M. Sumper, Polycationic Peptides from Diatom Biosilica That Direct Silica Nanosphere Formation. Science, 1999. 286(5442): p. 1129-1132.
22. Swihart, M.T., Vapor-phase synthesis of nanoparticles. Current Opinion in Colloid & Interface Science, 2003. 8(1): p. 127-133.
23. Kruis, F.E., H. Fissan, and A. Peled, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. Journal of Aerosol Science, 1998. 29(5–6): p. 511-535.
24. Hahn, H., Gas phase synthesis of nanocrystalline materials. Nanostructured Materials, 1997. 9(1–8): p. 3-12.
25. Moores, A. and F. Goettmann, The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New Journal of Chemistry, 2006. 30(8): p. 1121-1132.
26. Hiep, H.M., et al., A localized surface plasmon resonance based immunosensor for the detection of casein in milk. Science and Technology of Advanced Materials, 2007. 8(4): p. 331.
27. Henglein, A., Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chemical Reviews, 1989. 89(8): p. 1861-1873.
28. Garcia de Abajo, F.J., Colloquium: Light scattering by particle and hole arrays. Reviews of Modern Physics, 2007. 79(4): p. 1267-1290.
29. Zhao, J., et al., Methods for Describing the Electromagnetic Properties of Silver and Gold Nanoparticles. Accounts of Chemical Research, 2008. 41(12): p. 1710-1720.
30. Bahadur, N.M., et al., Fast and facile synthesis of silica coated silver nanoparticles by microwave irradiation. Journal of Colloid and Interface Science, 2011. 355(2): p. 312-320.
31. Schlucker, S., SERS Microscopy: Nanoparticle Probes and Biomedical Applications. ChemPhysChem, 2009. 10(9-10): p. 1344-1354.
32. Doering, W.E., et al., SERS as a Foundation for Nanoscale, Optically Detected Biological Labels. Advanced Materials, 2007. 19(20): p. 3100-3108.
33. Ghosh Chaudhuri, R. and S. Paria, Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chemical Reviews, 2011. 112(4): p. 2373-2433.
34. Mott, D., et al., Aqueous synthesis and characterization of Ag and Ag–Au nanoparticles: addressing challenges in size, monodispersity and structure. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010. 368(1927): p. 4275-4292.
35. Tunnell, T.A.E.a.J.W., Gold Nanoshells in biomedical Applications, in Mixed Metal Nanomaterials, C. Kumar, Editor. 2010, Wiley-VCH Verlag GmBH @ Co: USA. p. 1.
36. Csapo, E., et al., Synthesis and characterization of Ag/Au alloy and core(Ag)–shell(Au) nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012. 415(0): p. 281-287.
37. Liu, Y.-C., C.-C. Yu, and S.-F. Sheu, Low concentration rhodamine 6G observed by surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates. Journal of Materials Chemistry, 2006. 16(35): p. 3546-3551.
38. Stockman, M., Electromagnetic Theory of SERS, in Surface-Enhanced Raman Scattering, K. Kneipp, M. Moskovits, and H. Kneipp, Editors. 2006, Springer Berlin Heidelberg. p. 47-65.
39. Weaver, M.J., S. Zou, and H.Y.H. Chan, Peer Reviewed: The New Interfacial Ubiquity of Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2000. 72(1): p. 38 A-47 A.
40. Michaels, A.M., Jiang, and L. Brus, Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules. The Journal of Physical Chemistry B, 2000. 104(50): p. 11965-11971.
41. Kneipp, K., et al., Surface-enhanced Raman scattering and biophysics. Journal of Physics: Condensed Matter, 2002. 14(18): p. R597.
42. Abalde-Cela, S., et al., Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. Journal of The Royal Society Interface, 2010.
43. Kusnezow, W., et al., Antibody microarrays: An evaluation of production parameters. PROTEOMICS, 2003. 3(3): p. 254-264.
44. Hermanson, G.T., Bioconjugate Techniques second edition ed. 2008, USA: Thermo Fisher Scientific.
45. Habeeb, A.F.S.A., H.G. Cassidy, and S.J. Singer, Molecular structural effects produced in proteins by reaction with succinic anhydride. Biochimica et Biophysica Acta, 1958. 29(3): p. 587-593.
46. Understanding Breast Cancer -- the Basics. http://www.webmd.com/breast-cancer/guide/understanding-breast-cancer-basics, 2012.
47. Breast cancer. 2012.
48. Wax, A. Types of Breast Cancer: ER Positive, HER2 Positive, and Triple Negative. 2012; Available from: http://www.webmd.com/breast-cancer/breast-cancer-types-er-positive-her2-positive.
49. Colombo, M., et al., HER2 targeting as a two-sided strategy for breast cancer diagnosis and treatment: Outlook and recent implications in nanomedical approaches. Pharmacological Research, 2010. 62(2): p. 150-165.
50. HER2 Testing: Summary for Breast Cancer Patients. 2012; Available from: http://www.nccn.com/about-nccn-com/61-symptoms-category.html.
51. Qin, Y., et al., Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010. 372(1–3): p. 172-176.
52. Stamplecoskie, K.G., et al., Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy. The Journal of Physical Chemistry C, 2011. 115(5): p. 1403-1409.
53. Wu, Z., et al., Preparation of uniform Au@SiO2 particles by direct silica coating on citrate-capped Au nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011. 392(1): p. 220-224.
54. Sun, Y. and Y. Xia, Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium. Journal of the American Chemical Society, 2004. 126(12): p. 3892-3901.
55. Niitsoo, O. and A. Couzis, Facile synthesis of silver core – silica shell composite nanoparticles. Journal of Colloid and Interface Science, 2011. 354(2): p. 887-890.
56. Siiman, O., et al., Amplified light scattering and emission of silver and silver core–silica shell particles. Journal of Colloid and Interface Science, 2007. 309(1): p. 8-20.