簡易檢索 / 詳目顯示

研究生: 歐岡柏
GANG-BO OU
論文名稱: 有機/無機混成分散劑穩定奈米銀粒子之合成及其高導電薄膜製備
Immobilization of Silver Nanoparticles on Inorganic/Organic Hybrid Dispersants to Form Highly Conductive Nanohybrid Films
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 邱顯堂
Hsien-Tang Chiu
邱士軒
Shih-Hsuan Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 73
中文關鍵詞: 石墨烯雲母高分子分散劑薄層電阻奈米銀粒子奈米複合材料
外文關鍵詞: graphene oxide, mica, dispersant, sheet resistance, silver nanoparticles, nanohybrid
相關次數: 點閱:314下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究成功製備出多樣式高導電奈米複合薄膜,此薄膜是藉由塗佈有機/無機奈米銀混成材料而來,其中奈米銀粒子可經由有機高分子型分散劑、無機奈米黏土及石墨氧化烯以非共價作用力吸附而達到分散及穩定,並進一步將分散液塗佈及加熱程序,最終可以獲得高導電之薄膜材料。
本論文分成三部份去探討:
第一部份 設計合成親水性及親油性高分子型分散劑穩定奈米銀粒子。親水性分 散劑使用有機分散劑-聚氧乙烯-醯亞胺(POE-imide)是由聚氧乙烯二胺和4,4-鄰苯二甲酸酐在不同溫度下化學反應合成接枝的醯胺和醯亞胺。親油性分散劑使用聚異丁烯-醯亞胺(PIB-imide-PIB)是由聚異丁烯丁二酸酐和聚氧乙烯二胺分別在不同溫度下化學反應合成接枝成醯胺和醯亞胺。在二甲基甲醯胺(DMF)的溶液系統中與硝酸銀進行化學反應的還原及穩定,藉由UV-visible與TEM觀察銀粒子的生成與粒子的穩定性及大小。最後兩款分散劑所合成的奈米銀粒子的粒徑分佈約為25nm,是相當好的一個穩定性及合成,對於之後親水或親油系統有一個選擇性。
第二部分 親水性分散劑與奈米雲母矽片的有機/無機混成分散劑穩定奈米銀粒子。奈米雲母矽片是通過層狀結構的雲母與聚胺離子交換反應所製備成的較親水性的脫層雲母,每一片的尺寸寬度約300-1000nm,厚度為1nm,表面陽離子當量數為 120 mequiv/100 g,而表面離子≡SiO–Na+與硝酸銀產生原位還原反應,讓奈米雲母矽片因為比表面積大且附有表面帶電性的一個特點來穩定奈米銀粒子,再加入親水性的有機分散劑-聚氧乙烯-醯亞胺(POE-imide)的一個混成,讓奈米銀粒子的一個吸附及穩定於奈米雲母矽片的含量有所提升,而所合成的奈米銀粒子有較窄的粒徑分佈約為20nm。此外,使用奈米銀粒子/POE-imide/奈米雲母矽片在重量比20:20:1時來製備的複合薄膜,通過溫度的控制下電阻值可低至4.5×10-2 /sq。
第三部份 親油性分散劑與石墨烯的有機/無機混成分散劑來穩定奈米銀粒子。使用商業化的氧化石墨烯作為分散劑,因為石墨烯本身由多芳香族所組成,所以較為親油,有較佳的導電性,而石墨烯表面所帶有的羧酸等氧化官能基來產生離子間的吸引來穩定奈米銀粒子於石墨烯的表面,同樣的添加我們所設計的親油分散劑-聚異丁烯-醯亞胺(PIB-imide-PIB)的一個混成讓石墨烯中的奈米銀粒子的有較佳的含量提升,氧化數越高的石墨烯所合成的奈米銀粒子也較為穩定,最後在奈米銀粒子/PIB-imide-PIB/石墨烯重量比20:20:1下奈米銀粒子的粒徑分佈約為16nm,製備的複合薄膜,通過溫度的控制下電阻值可低至5.6×10-2 /sq。
本研究目的是藉有機/無機的混成來提升奈米銀粒子在無機材料作為分散劑時的一個穩定性及含量的提升,對於之後可將有機/無機混合分散溶液塗佈及導電應用,而因基材的不同,可應用於柔性電子產品,可增加撓曲性這些奈米複合薄膜在未來可用於各種導電性設備的使用。


In this thesis, there are three parts describing the highly electrically conductive films were prepared by coating organic/inorganic nanohybrid solutions.
Part1: Design and Synthesis of hydrophilicity and Hydrophobicity polymer-dispersed stabilized silver nanoparticles (AgNPs). The Hydrophilicity organic dispersant, a polyoxyethylene-segmented imide (POE-imide), was synthesized from polyoxyethylene diamine and 4,4-oxidiphthalic anhydride through continuous amidation and imidation reactions. The Hydrophobicity organic dispersant, a polyisobutylene imide (PIB-imide-PIB) as the organic dispersant was synthesized via an imidation reaction of polyisobutylene-g-succinic anhydride (PIB-SA) and poly(oxyethylene)-diamine. The synthesized AgNPs had a narrow size distribution and a diameter of approximately 25 nm.
Part2: The polymeric dispersant (POE-imide) and exfoliated mica nanosheets (Mica) on which AgNPs had been dispersed in various components. The high-aspect-ratio Mica was prepared previously by the exfoliation of mica clay with a layered structure through an ion-exchange reaction with polyamine. The Mica was polydispersed such that each platelet was 300–1000 nm in width and 1 nm in thickness. These inorganic nanosheets possessed ionic charges in the form of ≡SiO–Na+ at 120 mequiv/100 g and were suitable for supporting AgNPs, the synthesized AgNPs had a narrow size distribution and a diameter of approximately 20 nm. Furthermore, a film with a sheet resistance as low as 4.5 × 10-2 /sq could be prepared by controlling the heating temperature and by using AgNPs/POE-imide/Mica in a weight ratio of 20:20:1.
Part3: The polymeric surfactant (PIB-imide-PIB) and graphene oxide nanosheets (GON) at various weight ratios. These organic/inorganic nanohybrid dispersants supported AgNPs in the process of the in situ reduction of silver nitrate. AgNPs at a narrow size distribution of ~16 nm in diameter. Moreover, the film exhibiting sheet resistance as low as 5.6 × 10−2 Ω/sq was prepared by controlling heating treatment.
Overall, the goal of this study was to employ the nanohybrid surfactants to improve the dispersion of AgNPs. Furthermore the highly electrically conductive films have great potential in electrically conducting device applications.

致謝……………………………………………………………………I 中文摘要……………………………………………...........…………II Abstract..………………………………………………………….….IV 目錄……………………………………………………..….…..….…VI 圖目錄………………………………………………………………...X 表目錄…………………………………………………………...…..XIII 一、 前言及研究動機…………………………………….………...1 二、 文獻回顧………………………………………………………3 2.1 金屬奈米尺寸的性質與製備…………………………………………….3 2.1.1奈米尺寸的性質………………………………………………………3 2.1.2銀粒子的結構與特性………………………………………………....5 2.1.3奈米銀粒子製備方法…………………………………………………6 2.1.4銀鹽還原成奈米粒子的合成………………………………………….6 2.2 分散劑………………………………………………………………..…….8 2.2.1分散劑介紹…………………………………………………………….8 2.2.2分散劑聚醚胺介紹…………………………………………………….9 2.3 黏土…………………………………………………………………….….10 2.3.1黏土種類及介紹………………………………………………………10 2.3.2黏土表面帶電性……………………………………………………....11 2.3.3層狀黏土有機改質分散……………………………………..………..12 2.3.4黏土新型分散劑…………………………………….…………..……..14 2.4 石墨烯………………………………………………………………….…..15 2.4.1 碳材料的演變………………………………………………………….15 2.4.2 石墨烯的性質與發展………………………………………………….17 2.4.3石墨烯的製備方法介紹…………………………………………..……18 2.4.4石墨烯/銀之相關文獻………………………………………………….22 三、實驗方法…………………………………………………….……..23 3.1實驗材料………………………………………….…………………….…...23 3.2實驗設備………………………………………………….………….…..….24 3.3實驗流程…………………………………………………….………..……...25 3.4有機分散劑合成………………………………………………….….………26 3.4.1 POE-imide…………………………………………………………….…26 3.4.2 PIB-imide-PIB……………………………………………………….…..26 3.5有機分散劑穩定奈米銀粒子合成…………………………….……….……27 3.6奈米雲母矽片複合溶液………………………………………………..........27 3.6.1 脫層雲母的製備……………………………………………………..…..27 3.6.2 奈米銀粒子/POE-imide/奈米雲母矽片溶液的製備……………..……..28 3.7氧化石墨烯複合溶液………………………………………………..……….29 3.7.1分散氧化石墨烯溶液製備………………………………………….….....28 3.7.2奈米銀粒子/PIB-imide-PIB/石墨烯溶液的製備………………………....29 3.8奈米銀混合溶液製備高導電複合薄膜……………………………….………29 3.9 鑑定及儀器……………………………………………………………..……..30 四、結果與討論…………………………………………………………..31 Part1:有機分散劑系統…………………………………………………………..…..31 4.1.1聚氧乙烯分段醯亞胺的合成鑑定 ( POE-imide )………………….…….31 4.1.2聚異丁烯-醯亞胺的合成鑑定 ( PIB-imide-PIB )…………………………32 4.1.3奈米銀粒子/有機分散劑還原製備及UV spectra……………….……..…34 4.1.4奈米銀粒子/有機分散劑之穿透式電子顯微鏡………………….….……35 Part2:奈米雲母矽片/有機分散劑系統………………………………………………37 4.2.1雲母脫層製備………………………………………………………..……..37 4.2.2奈米銀粒子/ POE-imide/奈米雲母矽片混合溶液的材料合成…………..38 4.2.3奈米銀粒子/ POE-imide /奈米雲母矽片之穿透式電子顯微鏡及粒徑分 布………………………………………………………………………….…....…40 4.2.4奈米雲母矽片複合材料之熱重分析………………….……….…………..42 4.2.5奈米銀粒子/POE-imide/奈米雲母矽片導電薄膜………….………….….43 4.2.6場發射式電子顯微鏡(FESEM)觀察熔融後的奈米銀粒子導電連結的結構…………………………………………………………………….…………....46 Part3:氧化石墨烯/有機分散劑系統…………………………………………….….49 4.3.1分散氧化石墨烯溶液………………………………………………….….49 4.3.2奈米銀粒子/PIB-imide-PIB/氧化石墨烯混合溶液的材料合成…………50 4.3.3 奈米銀粒子/ PIB-imide-PIB/氧化石墨烯混合溶液粒徑…………......….55 4.3.4 氧化石墨烯複合材料之熱重分析………………………………….……..58 4.3.5奈米銀粒子/ PIB-imide-PIB/氧化石墨烯導電薄膜………………………60 4.3.6場發射式電子顯微鏡(FESEM)觀察熔融後的奈米銀粒子導電連結的結構……………………………………………………………………………..…...62 五、結論…………………………………………………………….…………….…66 參考文獻………………………………………………………….………………….67

1. Untereker, D.; Lyu, S.; Schley, J.; Martinez, G.; Lohstreter, L. Maximum Conductivity of Packed Nanoparticles and Their Polymer Composites. ACS Appl. Mater. Interfaces. 2009, 1, 97–101.
2. Qi, S.; Wu, Z.; Wu, D.; Wang, W.; Jin, R. Double-Surface-Silvered Polyimide Films Prepared via a Direct Ion-Exchange Self-Metallization Process. Chem. Mater. 2007, 19, 393–401.
3. Jiang, H.; Moon, K.; Hua, F.; Wong, C. P. Synthesis and Thermal and Wetting Properties of Tin/Silver Alloy Nanoparticles for Low Melting Point Lead-Free Solders. Chem. Mater. 2007, 19, 4482–4485.
4. Chiu, C. W.; Hong, P. D. Lin, J. J. Clay-Mediated Synthesis of Silver Nanoparticles Exhibiting Low-Temperature Melting. Langmuir 2011, 27, 11690–11696.
5. Chiu, C. W.; Chu, C. C.; Cheng, W. T.; Lin, J. J. Exfoliation of Smectite Clays by Branched Polyamines Consisting of Multiple Ionic Sites. Eur. Polym. J. 2008, 44, 628–636.
6. Chiu, C. W.; Chu, C. C.; Dai, S. A.; Lin, J. J. Self-Piling Silicate Rods and Dendrites from High Aspect-Ratio Clay Platelets. J. Phys. Chem. C 2008, 112, 17940–17944.
7. Tomalia, D. A. et al. Step & flash imprint lithography. Materials Today 2005, 8, 34.
8. Ozin,G.A.; Nanochemistry: Synthesis in diminishing dimensions, Adv.Mater, 1992, 4,612-649.
9. Wegner, K.; Walker, B.; Tsantilis, S.; Pratsinis, S. E. Design of Metal Nanoparticle Synthesis by Vapor Flow Condensation. Chemical Engineering Science, 2002, 57, 1753–1762.
10. Chen, C. C.; Yeh, C. C. Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires. Advanced Materials, 2000, 12, 738–741.
11. Ma, H.; Yin, B.; Wang, S.; Jiao, Y.; Pan, W.; Huang, S.; Chen, S.; Meng, F. Synthesis of Silver and Gold Nanoparticles by a Novel Electrochemical Method. ChemPhysChem, 2004, 24, 68–75.
12. Socol, Y.; Abramson, O.; Gedanken, A.; Meshorer, Y.; Berenstein, L.; Zaban, A. Suspensive Electrode Formation in Pulsed Sonoelectrochemical Synthesis of Silver Nanoparticles. Langmuir, 2002, 18, 4736–4740.
13. Jin, R.; Cao, Y. C.; Hao, E.; Metraux, G. S.; Schatz, G. C. & Mirkin, C. A. Controlling Anisotropic Nanoparticle Growth Through Plasmon Excitation. Nature, 2003, 425,487–490.
14. Yin, H.; Yamamoto, T.; Wada, Y.; Yanagida, S. Large-Scale and Size-Controlled Synthesis of Silver Nanoparticles under Microwave Irradiation. Materials Chemistry and Physics, 2004, 83, 66–70.
15. Tsuji, T.; Kakita, T. ; Tsuji, M.. Preparation of Nano-Size Particle of Silver with Femtosecond Laser Ablation in Water. Applied Surface Science, 2003,206, 314–320.
16. Chou, K. S.; Ren, C. Y.; Synthesis of Nanosized Silver Particles by Chemical Reduction Method. Materials Chemistry and Physics, 2002, 64,241–246.
17. Caswell, K. K.; Bender, C. M.; Murphy, C. J. Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires. Nano Letters. 2003, 3, 667–669.
18. Pillai, Z. S. ; Kamat, P. V. What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method. The Journal of Physical Chemistry B, 2004, 108, 945–95.
19. Pastoriza-Santos, I. ; Liz-Marzan, L. M. Synthesis of Silver Nanoprisms in DMF. Nano Letters, 2000, 2, 903–905.
20. Kurihara, L.K.; Chow, G. M.; Schoen, P. E. Nanocrystalline Metallic Powders and Films Produced by the Polyol Method. NanaShuchued Materials, 1995, 5, 607–613.
21. Sondi, I.; Goia, D. V.; Matijevic, E. Preparation of Highly Concentrated Stable Dispersions of Uniform Silver Nanoparticles. Journal of Colloid and Interface Science, 2003, 260, 75–81.
22. Sun, Y.; Xia, Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science, 2002, 298, 2176–2179.
23. Komarneni, S.; Li, D.; Newalkar, B.; Katsuki, H.; Bhalla, A. S. Microwave-Polyol Process for Pt and Ag Nanoparticles. Langmuir, 2002, 18, 5959–5962.
24. Pastoriza-santos I.; Liz-marzan m, Formatiom and stabilization of Silver Nanoparticles through Reduction by N,N-Dimethylformamide, Langmuir, 1999 , 15, 948-951.
25. 趙承琛博士編著,“界面科學基礎”,民國八十八年二月十八版,復文書局。
26. Harries, J. M.; Ed. Poly(ethylene glycol) chemistry: biotechnical and biomedical applications, New York, Plenum Press, 1992.
27. Konta, J. Clay and man: clay raw materials in the service of man, Applied Clay Science. 1995, 10, 275-335.
28. Mati, p. nfluence of Miscibility on Viscoelasticity, Structure, and Intercalation of Oligo-poly(caprolactone)/Layered Silicate Nanocomposites, Langmuir 2003, 19, 5502.
29. Solomon, D. H.;Hawthorne, D. G. Eds; Chemistry of pigments and Fillers, John Wiley & Sons, Inc: New York, 1983.
30. Lin Jiang-Jen .; Chen ,Yu-Min.; Yu, Ming-Hong. Hydrogen-bond driven intercalation of synthetic fluorinated mica by poly(oxypropylene)-amidoamine salts, Colloids and Surfaces A, 2007, 302, 162.
31. Chiu, C. W.; Chu, C. C.; Cheng, W. T.; Lin, J. J. Exfoliation of smectite clays by branched polyamines consisting of multiple ionic sites, Eur. Polym. J., 2008, 44, 628–636.
32. Pinnavaia, T. J. et al. Hybrid Organic−Inorganic Nanocomposites:  Exfoliation of Magadiite Nanolayers in an Elastomeric Epoxy Polymer. Chem Mater. 1998, 10, 1820.
33. Dong, Rui-Xuan.; Chou, Chih-Cheng.; Lin. Jiang-Jen. Synthesis of immobilized silver nanoparticles on ionic silicate clay and observed low-temperature melting, J. Mater. Chem., 2009, 19, 2184-2188.
34. Iijima, S. Helical microtubules of graphitic carbon, Nature, 1991, 354, 56.
35. Ganin, A. Y.; Takabayashi, Y.; Khimyak, Y. Z.; Margadonna, S.; Tamai, A.; Rosseinsky, M. J.; Prassides, K. Bulk superconductivity at 38 K in a molecular system. Nature Materials, 2008, 7, 367.
36. Geim, A. K. ; Kim, P.; Graphene, a newly isolated form of carbon, provides a rich lode of novel fundamental physics and practical application, Scientific American, 2008 , 298, 90-97.
37. Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat Nano, 2008, 3,270-274.
38. Geim, A.K.; K. S. Novoselove, The rise of graphene, Nat Mater, 2007, 6, 183-191.
39. Lee, Changgu. ; Wei, Xiaoding. ; Kysar, Jeffrey W.; Hone, James. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008, 321 (5887), 385.
40. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K.S.; Geim, A. K. The electronic properties of graphene.Rev. Mod. Phys.2009, 81, 109–162.
41. Dusari, S.; Barzola-Quiquia, J.; Esquinazi, P.; Garcia, N. Ballistic transport at room temperature in micrometer-size graphite flakes. Phys. Rev. B, 2011, 83, 125402.
42. Zhang, Y.; Tang, T. T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 2009, 459, 820-823.
43. Novoselov, K.S.; Neto, A. H. C. Two-dimensional crystals-based heterostructures: materials with tailored properties, Physica Scripta, 2012, 014006.
44. Berger, C.; Song, Z.; et al. Electronic confinement and coherence in patterned epitaxial graphene, Science, 2006, 312, 1191.
45. Iyechika, Y. Application of graphene to high-speed transistors: expectations and challenges, Science and Technology Trends-Quarterly Review, 2010 , 37, 76-92.
46. Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.B.; Bulovic, V.; et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Letters, 2009 . 9, 30-35.
47. Obraztsov, A.N.; Obraztsova, E.A.; Tyurnina, A.V.; Zolotukhin, A.A. Chemical vapor deposition of thin graphite films of nanometer thickness, Carbon, 2007 . 45, 2017-2021.
48. Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; et al., Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene, ACS Nano, 2011, 5, 6069-6076.
49. Yung, K.C.; Wu, W.M.; Pierpoint, M.P.; Kusmartsev, F. v. Introduction to graphene electronics – a new era of digital transistors and devices, Contemporary Physics, 2013.54, 233-251.
50. He, H.; Klinowski, J.; Forster, M.; Lerf, A. A new structure model for graphite oxide,” Chemical Physical Letters, 1998. 287, 53-56.
51. Lerf, A.; He, H.Y.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited, Chemistry B, 1998. 102. 4477-4482.
52. Hirata, M.; Gotou, T.; Horiuchi, S.; Fujiwara, M.; Ohba, M. Thin-film particales of graphite oxide1: High-yield synthesis and flexibility of the particles, Carbon, 2004. 42, 2929-2937.
53. Szabo, T.; Szeri, A.; Dekany, I. Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer, Carbon, 2005.43, 87-94.
54. Brodie, B. C. Sur le poids atomique du graphite, Ann. Chim. Phys. 1860. 59. 466-472.
55. Staudenmaier, L. Verfahren zur Darstellung der graphitsaure, Berichte der deutschen chemisch Gesellschaft, 1898. 31, 1481-1487.
56. Hummers, W.S.; Offeman, R. E. Preparation of Graphite Oxide,” Journal of the American Chemical Society, 1958. 80, 1339-1339.
57. Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y. J.; Chhowalla, M.; Shenoy, V. B. Structural evolution during the reduction of chemically derived graphene oxide, Nature Chem, 2010 . 2. 581-587.
58. Fan, Z.; Wang, K.; Wei, T.; Yan, J.; Song, L.; Shao, B. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder, Carbon, 2010. 48.1686–1689.
59. El Achaby, M. F.; Arrakhiz, Z.; Vaudreuil, S.; Essassi, E. M.; Qaiss, A. Piezoelectric β-polymorph formation and properties enhancement in graphene oxide—PVDF nanocomposite films, Applied Surface Science, 2012. 258. 7668–7677.
60. Pasricha, R.; Gupta, S.; Srivastava, A. K. A Facile and Novel Synthesis of Ag–Graphene-Based Nanocomposites, Weinheim small 2009, 5, 2253–2259.

無法下載圖示 全文公開日期 2020/07/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE