簡易檢索 / 詳目顯示

研究生: 黃眉滋
Mei-tzu Huang
論文名稱: 氧空缺對二氧化鈰奈米顆粒室溫鐵磁性影響之研究
Oxygen vacancy dependent magnetism in CeO2 nanoparticles
指導教授: 陳詩芸
Shih-yun Chen
口試委員: 黃子文
Tzu-wen Huang
陳良益
Liang-yih Chen
宋振銘
Jenn-ming Song
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 70
中文關鍵詞: 氧空缺二氧化鈰奈米顆粒室溫鐵磁性
外文關鍵詞: Oxygen vacancy, Cerium dioxide, Nanoparticles, RTFM
相關次數: 點閱:253下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用熱裂解法製備CeO2 奈米顆粒。為了解化學反應過程對合成樣品的影響,首先比較不同溶劑(辛基乙醚(Octyl ether)及二苯醚(Benzyl ether))的效果。結果發現使用此兩種溶劑均可製備粒徑小且分散性佳之CeO2奈米顆粒,兩種製程的粒徑相近,但樣品中的氧空缺含量差異很大。以辛基乙醚和二苯醚為溶劑合成的CeO2奈米顆粒,顆粒中的 Ce3+比例分別為42%及18%,且兩者的磁性明顯不同,在室溫下,前者為順磁,後者為鐵磁。
    進一步將以辛基乙醚為溶劑製備的CeO2奈米顆粒為原料,在不同氧分壓下進行熱處理,結果發現樣品的鐵磁性隨著氧分壓的增加而減小。另外,在氧化氣氛(air),500℃下,進行一小時到八小時的退火處理,結果顯示樣品的飽合磁化強度隨退火時間增長先上升再下降,XAS分析結果則指出樣品中的氧空缺傾向分佈於顆粒的表面,根據此模型,進一步計算表面的Ce3+比例,結果顯示,樣品的飽合磁化強度與表面的Ce3+比例有關,且並非呈簡單的線性關係,由目前的結果推測,當表面的Ce3+ 比例在35%到40%之間,樣品會有最大的飽合磁化強度(MS)。


    This study investigated the magnetism of CeO2 nanoparticles prepared by thermal decomposition method. At first, it is found that the properties of CeO2 NPs were strongly related to the synthesis parameters. CeO2 NPs prepared by using Octyl ether as solvent have higher degree of oxygen deficiency than that of NPs using Benzyl ether a solvent. The concentration of Ce3+ is 42% of the former and 18% of the latter. Importantly, the former one is paramagnetic while the later one is ferromagnetic at room temperature. Then the CeO2 NPs were undergo different redox treatments. It includes the annealing in different oxygen partial pressure at 500℃ for 2hrs, and the annealing in air at 500℃ for different time. Combined the XAS and TEM analysis, it was found that the oxygen vacancy tends to locate at the surface of NPs. In addition, it was found that the magnetism of CeO2 NPs is related to the concentration of Ce3+ at surface. According to our results, it is proposed that the highest Ms will be obtained in CeO2 NPs with 35%~40% Ce3+ at surface.

    目 錄 中文摘要 Ⅰ 英文摘要 Ⅲ 誌謝 IV 目錄 Ⅴ 圖表索引 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究背景 2 1.3 研究目的 3 第二章 相關理論介紹 4 2.1 磁性理論 4 2.1.1 磁滯曲線 8 2.1.2 居禮溫度(Curie Temperature) 9 2.2 稀磁性半導體 18 2.2.1 稀磁性半導體(DMS) 18 2.2.2 稀磁性半導體之磁性來源機制 20 2.3 二氧化鈰 24 2.3.1 二氧化鈰基本特性 24 2.3.2 二氧化鈰的應用 25 2.4 奈米材料之製備方式 27 2.5 熱裂解法 30 第三章 實驗部分 33 3.1 實驗步驟 33 3.1.1 CeO2製備 33 3.1.2 氧化還原退火流程 34 3.2 性質分析 34 3.2.1 X-射線粉末繞射光譜儀 34 3.2.2 場發射穿透式電子顯微鏡 35 3.2.3 超導量子干涉磁量儀 36 3.2.4 X光能量吸收光譜 37 第四章 結果與討論 39 4.1 製程參數對CeO2奈米微粒之微結構的影響 39 4.1.1 XRD和TEM結果分析 39 4.1.2 SQUID和XAS結果分析 40 4.2 氧化還原氣氛下退火對CeO2性質的影響 47 4.2.1 XRD和TEM結果分析 47 4.2.2 XAS結果分析 51 4.2.3 SQUID結果分析 54 4.3 持溫時間對CeO2性質的影響 57 4.3.1 XRD和TEM結果分析 57 4.3.2 XAS分析 61 4.3.3 SQUID分析 63 4.4 不同製程對CeO2性質的影響 68 第五章 結論 70 參考文獻 71

    1. 許華書、黃榮俊,「以3d過渡金屬摻雜氧化物之稀磁性半導體研究」,物理雙月刊,第二十六卷,第四期,第599-606頁(2004)。
    2. 胡裕民,「III-V 稀磁性半導體薄膜之研究與發展」,物理雙月刊,第二六卷,第四期,第587-598頁(2004)。
    3. H. Ohno, Science, Vol. 281, pp. 951(1998)
    4. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science, Vol. 287, pp. 1019 (2000)
    5. N. H. Hong, J. Sakai, W. Prellier, A. Hassini, A. Ruyter, and F. Gervais, Physical Review B, Vol. 70, pp. 195204 (2004).
    6. A. Tiwari, V. M. Bhosle, S. Ramachandran, N. Sudhakar, J. Narayan, S. Budak, and A. Gupta, Applied Physics Letters, Vol. 88, pp. 142511(2006)
    7. Y. Takeuchi, G. Yoshizaki, and T. Takeuchi, Nature, Vol. 430, pp. 630(2004)
    8. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. N. R. Rao, Physical Review B, Vol. 74, pp. 161306 (2006)
    9.Q. Y. Wen, H. W. Zhang, Y. Q. Song, Q. H. Yang, H. Zhu, and J. Q. Xiao,Journal of Physics: Condensed Matter, Vol. 19, pp. 246205 (2007)
    10. 盧一心,「二氧化鈰奈米顆粒室溫鐵磁來源之研究」,碩士論文,國立台灣科技大學高分子工程研究所,台北(2009)
    11. Robert C. O’ Handley, Modern Magnetic Materials Principles and Applications(1999)
    12. Soshin Chikazumi著,張煦、李學養譯,磁性物理學,聯經出版事業公司(1982)
    13. Cullity BD and Graham CD,「Introduction to magnetic materials, 2nd edition」,Wesley-IEEE, Chapter 1, 4, 6( 2008)
    14. 黃鑫泓,「氧化鋅稀磁性半導體及其與氧化鎳反鐵磁之交互耦合研究」,碩士論文,國立清華大學材料科學工程研究所,台南(2006)
    15. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Applied Physics Letters, Vol. 69, pp. 363(1996)
    16. G. A. Prinz, Science, Vol. 282, pp. 1660 (1998).
    17. F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Physical Review B, Vol. 57, pp. 2037 (1998).
    18. H. Munekata, H. Ohno, S. V. Molnar, A. Segmuller, L. L. chang, and L. Esaki, Physical Review Letters, Vol. 63, pp. 1849 (1989).
    19. H. Akai, Physical Review Letters, Vol. 81, pp. 3002 (1998).
    20. H. Ohno, H. Munekata, T. Penneys S. V. Molnar, and L. L. chang, Physical Review Letters, Vol. 68, pp. 2664 (1992).
    21. Y. Q. Song, H. W. Zhang, Q. Y. Wen, H. Zhu and J. Q. Xiao, Journal of Applied Physics, Vol. 102, pp. 043912(2007)
    22. B. Vodungbo, Y. Zheng, F. Vidal, D. Demaille, V. H. Etgens and D. H. Mosca, Applied Physics Letters, Vol. 90, pp. 062510 (2007).
    23. V. Fernandes, J. J. Klein, N. Mattoso, D. H. Mosca, E. Silveira, E. Ribeiro, W. H. Schreiner, J. Varalda, and A. J. A. de Oliveira, Physical Review B, Vol. 75, pp. 121304(2007)
    24. Y. Q. Song, H. W. Zhang, Q. Y. Wen, Y. X. Li and J. Q. Xiao, Chinese. Physical Letter, Vol. 24, No.1, pp. 218 (2007)
    25. L. Bi, H. S. Kim, G. F. Dionne, S. A. Speakman, D. Bono, and C. A. Ross,Journal of Applied Physics, Vol. 103, pp. 07D138(2008)
    26. Y. Q. Song, H. W. Zhang, Q. Y. Wen, L. Peng, and J. Q. Xiao, Journal of Physics: Condensed Matter, Vol. 20, pp. 255210(2008)
    27. Y. Zheng, B. Vodungbo, F. Vidal, M. Selmane, and D. Demaille, Journal of Crystal Growth, Vol. 310, pp. 3380–3385(2008)
    28. Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. Q. Song, and J. Q. Xiao, Journal of Magnetism and Magnetic Materials, Vol. 321, pp. 3110–3113 (2009)
    29. L. R. Shah, B. Ali, H. Zhu, W. G. Wang, Y. Q. Song, H. W. Zhang, S. I. Shah, and J. Q. Xiao, Journal of Physics: Condensed Matter, Vol. 21, pp. 486004(2009)
    30. B. Vodungbo, F. Vidal, Y. Zheng, M. Marangolo, D. Demaille, V. H. Etgens, J. Varalda, A. J. A. de Oliveira, F. Maccherozzi and G. Panaccione, Journal of Physics: Condensed Matter, Vol. 20, pp. 125222(2009)
    31. B. Ali, L. R. Shah, C. Ni, J. Q. Xiao, and S. I. Shah, Journal of Physics: Condensed Matter, Vol. 21, pp. 456005(2009)
    32. A. Thurber, K. M. Reddy, and A. Punnoose, Journal of Applied Physics, Vol. 101, pp. 09N506(2007)
    33. A. Thurber, K. M. Reddy, V. Shutthanandan, M. H. Engelhard, C. Wang, J. Hays, and A. Punnoose, Physical Review B, Vol. 76, pp. 165206(2007)
    34. 盧志權,工業材料雜誌,Vol. 169, pp. 117(2001)
    35. A. V. Esch, L. V. Bockstal, J. De Boeck. G. Verbanck, A. S. V. Steenbergen, P. J. Wellmann, B. Grietens, R. Bogaerts, F. Herlach and G.Borghs, Physical Review B, Vol. 56, No. 20, pp. 13103(1997)
    36. H. J. Lee, S. Y. Jeong, C. R. Cho, and C. H. Park, Applied Physics Letters, Vol. 81, No. 21, pp. 4020(2002)
    37. 林冠君,「氧化鎂緩衝層對氧化銦錫掺雜鈷之稀磁性半導體研究」,碩士論文,國立成功大學物理研究所,台南(2008)
    38. V. I. Litvinov and V. K. Dugaev, Physical Review Letters, Vol. 86, No. 24, pp. 5593(2001)
    39. M. Berciu and R. N. Bhatt, Physical Review Letters, Vol. 87, No. 10, pp. 107203(2001)
    40. H. Akai, Phys. Physical Review Letters, Vol. 81, No. 14, pp. 3002(1998)
    41. J. Konig, H. H. Lin, and A. H. MacDonald, Physical Review Letters, Vol. 84, No. 24, pp. 5628(2000)
    42. J. Konig, H. H. Lin, and A. H. MacDonald, Physical Review Letters, Vol. 86, No. 24, pp. 5637(2001)
    43. J. M. D. Coey, M. Venkatesan and C.B. Fitzgerald, Nature Materials, Vol. 4, pp. 173(2005)
    44. 張宏毅,「二氧化鈰奈米粉體之晶形操控-製備、特性分析及氧化催化活性」,博士論文,國立成功大學化學工程學系,台南(2005)
    45. Y. Q. Song , H. W. Zhang, Q. H. Yang, Y. L. Liu, Y. X. Li, L. R. Shah, H. Zhu, and J. Q. Xiao, Journal of Physics: Condensed Matter, Vol. 21, pp. 125504 (2009)
    46. S. Tsunekawa, T. Fukuda, and A. Kasuya, Journal of Applied Physics, Vol. 87, No. 3, pp. 1318-1321(2000)
    47. X. L. Song, G. Z. Qiu and P. Qu, Rare Metal Materials and Engineering, Vol 33, pp. 29-34(2004)
    48. P. Patsalsa, S. Logothetidis, L. Sygellou and S. Kennou, Physical Review B, Vol. 68, pp. 035104(2003)
    49. M. Sugiura, Catalysis Surveys from Asia, Vol. 7, No. 1, pp. 77-78(2003)
    50. 李秋煌,「改善生活的仙丹」,科學發展370期,第 29-33頁(2003)
    51. T. Morimoto, H. Tomonaga , and A. Mitani, Thin Solid Films, Vol. 351,
    pp. 61-65(1999)
    52. R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, and T. Sato, Solid State Ionics, Vol. 151, pp. 235-241(2002)
    53. S. Yabe and T. Sato, Journal of Solid State Chemistry, Vol. 171, pp. 7-11(2003)
    54. P. A. Atanasov, T. Okato, R. I. Tomov, and M. Obara, Thin Solid Films, Vol. 453-454, pp. 150-153(2004)
    55. M. Shirakawa, J. Unno, K. Aizawa, M. Kusunoki, M. Mukaida, and
    S. Ohshima, Physica C, Vol. 392-396, pp. 1346-1352(2003)
    56. C. L. Chai, S. Y. Yang, Z. K. Liu, M. Y. Liao, and N. F. Chen, Chinese Science Bulletin, Vol. 48, pp. 1198-1200(2003)
    57. M. Tomozawa, Solid State Technology, Vol. 40, pp. 169-172(1997)
    58. N. Izu, W. Shin, and N. Murayama, Sensors and Actuators B, Vol. 93,
    pp. 449-453(2003)
    59. A. Trinchi, Y. X. Li, W. Wlodarski, S. Kaciulis, L. Pandolfi, S. Viticoli, E. Comini, and G. Sberveglieri, Sensors and Actuators B, Vol. 95, pp. 145-150(2003)
    60. N. M. Sammes and Z. Cai, Solid State Ionics, Vol. 100, pp. 39-44(1997)
    61. D. Schneider, M. Godickemeier and L. J. Gauckler, Jornal of Electroceramics, Vol. 1, pp. 165-172(1997)
    62. O. A. Marina, C. Bagger, S. Primdahl and M. Mogensen, Solid State Ionics, Vol. 123, pp. 199-208(1999)
    63. 馬振基,奈米材料科技原理與應用,全華科技圖書股份有限公司,台北,第1-8頁(2005)
    64. 唐偉忠 著,薄膜材料製備原理、技術與應用,北京冶金工業出版社,第2章(2003)
    65. 李秀文,「奈米材料對ITO光電特性之改質研究」,碩士論文,元智大學化學工程學系,桃園(2002)
    66. 連昭晴,「鐵/金核殼型磁性複合奈米粒子之製備與應用」,碩士論文,國立成功大學化學工程學系,台南(2004)
    67. T. Hyeon, The Royal Society of Chemistry, pp. 927-934(2003)
    68. T. Hyeon, S. S. Lee, J. Park, Y. Chung, and H. B. Na, Journal of the American Chemical Society, Vol. 123, pp. 12798-12801 (2001)
    69. H. Shao, Y. Huang, H. Lee, Y. J. Suh, and C. O. Kim, Journal of Magnetism and Magnetic Materials, Vol. 304, pp. 28-30(2006)
    70. 彭暘尹,「二氧化鈰奈米顆粒室溫鐵磁性(RTFM)的研究」,碩士論文,國立台灣科技大學工程技術研究所,台北(2010)
    71. P. Nachimuthu, W. C. Shih, R. S. Liu, L. Y. Jang and J. M. Chen, Journal of Solid State Chemistry, Vol. 149, pp. 408-413(2000)
    72. M. Li, S. Ge, W. Qiao, L. Zhang, Y. Zuo and S. Yan, Applied Physics Letters, Vol. 94, pp. 152511 (2009)

    QR CODE