簡易檢索 / 詳目顯示

研究生: 翁宗憲
Zong-Sian Wong
論文名稱: 高矽球墨鑄鐵與高矽鑄鋼在空氣中的高溫氧化
A Study on High Temperature Oxidation of High Silicon Ductile Iron and High Silicon Cast Steel in Air
指導教授: 雷添壽
Tien-Shou Lei
口試委員: 鄭偉鈞
Wei-Chun Cheng
林本源
Been-Yuan Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 77
中文關鍵詞: 內部氧化
外文關鍵詞: Internal Oxidation
相關次數: 點閱:208下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究的主要目的為探討高矽球墨鑄鐵及高矽鑄鋼在高溫空氣下的氧化行為,以探討氧化層型態與矽元素內部氧化之關聯。實驗的進行是將試片置於熱處理爐內,分別在500、600、700及800℃下的溫度進行氧化試驗;氧化的程度是量測實驗前、後試片的重量變化或氧化層的厚度;氧化層與內部氧化的顯微結構則以OM、SEM及EDS觀察與分析。
實驗結果顯示:高矽鑄鋼的氧化增加量隨Si含量增加而減少,顯示Si可以提升鋼鐵的抗氧化能力;高矽球墨鑄鐵與高矽鑄鋼的氧化模式略有不同,高矽球墨鑄鐵的氧化行為屬於線性關係,而高矽鑄鋼的氧化行為則是介於線性與拋物線關係之間;在500℃氧化時,高矽球墨鑄鐵,含4.71 wt.% Si,耐氧化能力最佳;在600及700℃氧化時,氧化初期高矽球墨鑄鐵亦顯示較佳的耐氧化能力,但在氧化後期,含矽4.05 wt.%的高矽鑄鋼,則有最佳的耐氧化能力。
Si的內部氧化現象,並未發生在500℃的氧化,而是發生在更高溫的600、700 及800℃的氧化;高矽鑄鋼在800℃並未觀察到此種Si的內部氧化現象。至於內部氧化層之氧化物隨時間的增加,其形態會由緻密轉為鬆散,而隨著溫度的上升,其形狀也由長條狀轉為短小粗大狀。另外,高矽鑄鋼之內部氧化層則較高矽球墨鑄鐵緻密且細小。


In this research it is aimed to investigate the high temperature oxidation behavior of high silicon ductile iron and high silicon cast steel in air. The relationship between morphology of oxide layers and internal oxidation of silicon element is studied. Oxidation tests were carried in a furnace at 500, 600, 700, and 800 ℃, respectively; the extent of oxidation was measured by the change of weight of specimen or by the thickness of oxide layers; the microstructure of oxide layers and internal oxidation were examined by OM, SEM, and EDS.
The results show that: for high silicon cast steels, the oxidation weight gains decrease with Si content increased, this conforms that the addition of Si will improve the oxidation resistance of steel; the oxidation modes different for high silicon ductile iron to high silicon cast steels, the oxidation behavior of high silicon ductile iron is linear, and high silicon cast steels is toward parabolic; oxidation at 500℃, high silicon ductile iron with 4.71 wt. % has the best oxidation resistance; oxidation at 600 and 700℃, high silicon ductile iron also showed a better resistance in the early stage, but a inferior resistance in the late oxidation.
The internal oxidation of Si was not occurred in 500℃, but occurred in temperatures higher than 600 ℃; high silicon cast steels was not observed the internal oxidation of Si at 800℃. As time increasing, the shape of internal oxidation changes from dense to loose, and as temperature increasing, the particles gets thicker. In addition, the internal oxidation layer of high silicon cast steels is more dense and smaller than high silicon ductile iron.

摘要 I Abstract II 誌謝 III 目錄 IV 圖索引 VI 表索引 IX 第一章 前言 1 第二章 理論與文獻回顧 3 2.1 氧化熱力學 3 2.2 氧化動力學 4 2.3 高溫氧化機制 5 2.4 氧化膜之結構 6 2.5 鐵之氧化物型態 7 2.6 高矽球墨鑄鐵之高溫氧化 8 2.7 鐵矽合金之高溫氧化 9 2.8 內部氧化 11 第三章 實驗方法 18 3.1 實驗流程與材料備製 18 3.2 氧化試驗 19 3.3 金相顯微組織觀察與成份分析 20 第四章 結果與討論 27 4.1 氧化動力學 27 4.1.1 氧化增重與溫度關係 27 4.1.2 氧化行為 28 4.2 氧化層的顯微結構 30 4.2.1 OM金相 30 4.2.2 氧化層之微觀組織與元素分佈 33 4.3 內部氧化 35 第五章 結論 70 參考文獻 72 作者簡介 77

[1] 潘永寧,「耐高溫球狀石墨鑄鐵」,機械月刊,第十卷,第八期,第95-101頁,( 1984 )。
[2] C. F. Walton, Iron Casting Handbook, Iron Casting Society, New York, (1981)
[3] 賴佑昇,「高矽球墨鑄鐵在空氣中之氧化行為及顯微組織」,碩士論文,國立台灣科技大學,台北,( 2009 )。
[4] A. S. Khanna, Introduction to High Temperature Oxidation and Corrosion, ASM International, Nevada, pp. 1-11 (2002)
[5] D. R. Gaskell, Introduction to the Thermodynamics of Materials, Taylor and Francis, New York and London, pp. 359, (2003)
[6] N. Birks, and G. H. Meier, Introduction to High Temperature Oxidation of Metals, Edward Arnold, London, pp. 54-62, (1983)
[7] 日本腐蝕防蝕學會編,池田雄二等著,黃忠良譯,金屬材料之高 溫氧化與腐蝕,復漢出版社,台北,( 1999 )。
[8] A. S. Khanna, Introduction to High Temperature Oxidation and Corrosion, ASM International, Nevada, pp. 7-17, (2002)
[9] D. R. Askeland, The Science and Engineering of Materials, Thomson Canada Limited, Nelson, pp. 828-832, (2006)
[10] A. Brasunas, Nace Basic Corrosion Course, National Association of Corrosion Engineers, Huston, (1970)
[11] 朱日彰,耐熱鋼和高溫合金,化學工業出版社,北京,第35頁,( 1996 )。
[12] 柯賢文,腐蝕及其防制,全華科技圖書股份有限公司,台北,第227-238頁,( 1995 )。
[13] 魏寶明,金屬腐蝕理論及其應用,化學工業出版社,北京,( 1984 )。
[14] Z. D. Jastrzebski, The Nature and Properties of Engineering Materials, John Wiley and Sons, Canada, pp. 496-498, (1987)
[15] D. A. Porter, and K. E. Easterling, Phase Transformations in Metals and Alloys, Van Nostrand Reinhold Limited, Canada, (1981)
[16] U. R. Evans, The Corrosion and Oxidation of Metals, Edward Arnold, London, p. 39, (1960)
[17] M. G. Fontana, Corrosion Engineering, McGraw-Hill Book Company, New York, pp. 505-507, (1986)
[18] N. Birks, and G. H. Meier, Introduction to High Temperature Oxidation of Metals, Edward Arnold, London, pp. 118-119, (1983)

[19] J. M. West, Basic Corrosion and Oxidation, Prentice Hall, New York, pp. 171-173, (1986)
[20] O. Kubaschewaki, and B. E. Hopkins, Oxidation of Metals and Alloys, Academic Press, New York, pp. 1-2, (1962)
[21] 吳覺宇、陳有忠,「鋼鐵氧化銹皮保護性之電化學研究」,技術與訓練,第九卷,第三期,第18-39頁,( 1984 )。
[22] N. Birks, and G. H. Meier, Introduction to High Temperature Oxidation of Metals, Edward Arnold, London, p. 73, (1983)
[23] O. Kubaschewaki, and B. E. Hopkins, Oxidation of Metals and Alloys, Academic Press, New York, p. 113, (1962)
[24] M. F. Burditt, Ductile Iron Handbook, American Foundrymen’s Society, Des Plaines, (1992)
[25] S. H. Park, J. M. Kim, H. J. Kim, S. J. Ko, H. S. Park, and J. D. Lim, “Development of A Heat Resistant Cast Iron Alloy for Engine Exhaust Manifolds”, SAE International, SAE 2005-01-1688, (2005)
[26] F. Tholence, and M. Norell, “High Temperature Corrosion of Cast Alloys in Exhaust Environments I-Ductile Cast Irons”, Oxidation of Metals, Vol. 69, pp. 13-36, (2008)

[27] 賴逸林,「石墨形態對鑄鐵耐熱性質之影響研究」,碩士論文,國立台灣大學,台北,( 2001 )。
[28] 魏瓞彰,「球狀石墨鑄鐵之耐熱性質研究」,碩士論文,國立台灣大學,台北,( 2001 )。
[29] O. Kubaschewaki, and B. E. Hopkins, Oxidation of Metals and Alloys, Academic Press, New York, pp. 232-233, (1962)
[30] N. Birks, and G. H. Meier, Introduction to High Temperature Oxidation of Metals, Edward Arnold, London, pp. 112-115, (1983)
[31] I. Svedung, and N. G. Vannerberg, “The Influence of Silicon on the Oxidation Properties of Iron”, Corrosion Science, Vol. 14, pp. 391-399, (1974)
[32] A. Atkinson, “A Theoretical Analysis of the Oxidation of Fe-Si Alloys”, Corrosion Science, Vol. 22, pp. 87-102, (1982)
[33] M. G. Fontana, Corrosion Engineering, McGraw-Hill Book Company, New York, pp. 519-520, (1986)
[34] N. Birks, and G. H. Meier, Introduction to High Temperature Oxidation of Metals, Edward Arnold, London, pp. 94-95, (1983)
[35] A. S. Khanna, Introduction to High Temperature Oxidation and Corrosion, ASM International, Nevada, pp. 109-113, (2002)
[36] R. A. Rapp, “Kinetics, Microstructure and Mechanism of Internal Oxidation-Its Effect and Prevention in High Temperature Alloy Oxidation”, Corrosion, Vol. 21, p. 382, (1965)
[37] 黃振賢,金屬熱處理,新文京開發出版有限公司,台北,第232-237頁,( 1997 )。
[38] 楊毓玲,「矽含量對電磁鋼高溫氧化行為之影響研究」,碩士論文,國立成功大學,台南,( 2006 )。
[39] C. W. Tuck, “Non-Protective and Protective Scaling of A Commercial 1 3/4 % Silicon-Iron Alloy in the Range 800-1000℃”, Corrosion Science, Vol. 5, pp. 631-643, (1965)
[40] G. C. Wood, “Some Observations on the Break-Through of Protective Oxide Films on Iron-Chromium Alloys”, Corrosion science, Vol. 2, pp. 255-268, (1962)
[41] T. Ban, K. Bohnenkamp, and H. J. Engell, “The Formation of Protective Films on Iron-Silicon Alloys”, Corrosion Science, Vol. 19, pp. 289-293, (1979)
[42] F. Tholence, and M. Norell, “AES Characterization of Oxide Grains Formed on Ductile Cast Irons in Exhaust Environments”, Surface and Interface Analysis, Vol. 34, pp. 535-539, (2002)

QR CODE