簡易檢索 / 詳目顯示

研究生: 吳立韋
Li-Wei Wu
論文名稱: 鐵-30錳-1.7鋁-1碳合金鋼時效相變化研究(Ⅱ)
Phase transformations during agingprocesses in an Fe-30Mn-1.7Al-1C alloy (Ⅱ)
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 雷添壽
Tien-Shou Lei
王朝正
Chaur-Jeng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 133
中文關鍵詞: 時效恆溫熱處理相變化碳化物層狀反應共析反應方位關係
外文關鍵詞: cellular precipitation, eutectoid reaction
相關次數: 點閱:259下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文為研究鐵-30.2錳-1.72鋁-0.99碳( wt% )的高錳鋼的相變化情形。合金的熱處理方式為:先經1100℃固溶處理後,再於900至400℃作恆溫熱處理。於1100與850℃之間,合金的組成相為沃斯田體。於825℃以下的溫度,沃斯田體內有M3C及M23C6碳化物等二種碳化物共存的現象,且部份M3C或是M23C6碳化物是以層狀組織的形式出現。於600℃之以下,則有共存的M3C波來體與M23C6波來體。
以TEM-EDS分析兩種碳化物,兩者所含的錳量都相當的高,皆比沃斯田體基地的錳量高;於750℃以下的溫度時,M3C碳化物的錳含量甚至高於M23C6碳化物。然而,此兩種碳化物內所固溶的錳量是隨著溫度的上升而增高;隨著溫度的上升,M23C6碳化物內固溶錳量的增加量是高於M3C碳化物的增加量。故當溫度為800℃時,M23C6碳化物的錳含量甚至是高於M3C碳化物。M3C碳化物幾乎不含鋁;而M23C6碳化物於低溫時可溶入少量的鋁。另外,於波來體組織內的肥粒體為含有高鋁及低錳的組成相。
經TEM擇區繞射圖的觀察,發現於層狀組織內的碳化物,與其鄰近的晶粒具有一些方位關係。M3C碳化物與沃斯田體的[001]C // [1 ̅12]γ,(220)C // (11 ̅1)γ;而M23C6與沃斯田體為立方晶對立方晶的關係。M3C碳化物與肥粒體具有四種不同的方位關係,分別為[011 ̅]C//[01 ̅1]α,(211)C//(011)α;[100]C//[1 ̅13]α,(031)C//(110)α;[11 ̅1]C//[11 ̅3]α,(110)C//(1 ̅21)α;及[101 ̅]C//[112 ̅]α,(252)C//(11 ̅0)α。另外,於 M23C6碳化物與鄰近肥粒體晶粒,亦發現一組未曾被報導過的新方位關係:[011 ̅]C6//[01 ̅1]α,(111)C6//(011)α,(200)C6//(21 ̅1)α。


We have studied the phase transformation of a Fe-30.2Mn-1.72Al -0.99C (wt%) steel. The steel was heated at 1100℃ for solution heat treatment, and aged for 25 h at low temperatures ranging from 900 to 400℃. The steel is full austenite between 1100 and 850℃. Below 825℃, M3C and M23C6 carbides precipitate in the austenitic matrix. Cellular reactions were observed for the precipitation of both M3C and M23C6 carbides with the austenitic grains. At temperatures below 600℃, we found eutectoid reactions for the decomposition of the austenite into M3C and M23C6 pearlites, separately.
In the TEM-EDS analysis, we found both carbides contain high Mn concentration which is greater than the austenitic matrix. At temperatures below 750℃, the Mn concentration of the M3C carbide is higher than that of M23C6 carbide. The Mn contents of both carbides increase as the temperature increases. However, the rate of increasing Mn concentration with temperature for M23C6 carbide is higher. Therefore, at 800℃ the Mn content of M23C6 carbide is higher than that of M3C carbide. M3C carbide is almost free of aluminum; and M23C6 carbide contains a small amount of aluminum at low temperatures. In addition, the ferrite in the pearlite contains high Al and low Mn concentration.
We found several orientation relationships between carbides and their neighboring grains as follows: [001]C//[1 ̅12]γ, (220)C//(11 ̅1)γ; [011 ̅]C//[01 ̅1]α, (211)C//(011)α; [100]C//[1 ̅13]α, (031)C//(110)α; [11 ̅1]C//[11 ̅3]α, (110)C//(1 ̅21)α; and [101 ̅]C//[112 ̅]α, (252)C//(11 ̅0)α. In addition, a new orientation relationship is [011 ̅]C6//[01 ̅1]α, (111)C6//(011)α, (200)C6//(21 ̅1)α.

第一章 前 言1 第二章 文獻回顧8 2.1 擴散型相變化8 2.2 Cellular precipitation9 2.3 鐵碳系統的共析反應9 2.4 鐵錳碳系統的共析反應10 2.5 合金鋼中的碳化物11 第三章 實驗方法21 3.1 合金冶煉21 3.2 合金鑄錠加工22 3.3 合金熱處理22 3.4 試片製作流程23 3.5 分析儀器26 第四章 結果與討論34 4.1 恆溫熱處理34 4.2 層狀碳化物於沃斯田體晶粒45 4.3 波來體組織50 4.5 碳化物與鄰近晶粒間之方位關係54 第五章 結 論108 參考文獻112 附錄 114

1.H.Baker, “ASM Handbook V.3 Alloy Phase Diagrams” (1992).
2.R.Benz, J.F. Elliott and J. Chipman, Metall. Trans., 4, 1975(1973).
3.W.F. Smith, “Structure and Properties of Engineering Alloys”, 2nd, (1993).
4.K. Ishida, H. Ohtatani, N. Satoh, R. Kainuma and T. Nishizawa, ISIJ International,30, No.8,680 (1990).
5.W. K. Choo, J. H. Kim, and J. C. Yoon, Acta Mater., 45, No.12, 4877 (1997).
6.張育仁,“鐵-30錳-1.7鋁-1碳之高錳鋼恆溫熱處理相變化研究”,國立台灣科技大學,碩士論文(2009)。
7.吳旻紘,“鐵-31錳-1.5鋁-0.6碳合金鋼之恆溫熱處理相變化研究”,國立台灣科技大學,碩士論文(2009)。
8.D.A. Porter and K.E. Easterling, “Phase Transformations in Metals and Alloys”, 3rd, (2008).
9.黃振賢,金屬熱處理,文京出版社 第18版 (2000)。
10.C.R. Hutchinson, R.E. Hackenberg and G.J. Shiflet, Acta Mater., 52, 3565 (2004).
11.F. H. Samuel and A.A. Hussein, Transactions ISIJ, Vol. 23, 65 (1983).

12.C.R. Hutchinson and G.J. Shiflet, Scripta Mater., 50, 1 (2004).

13.S.A. Hackney and G.J. Shiflet, Acta Metall, 35, No 5, 1007 (1987).
14.K.H. Kuo, C.L. Jia, Acta Metall., 33, No.6, 991 (1985).
15.J.Janovec, M. Svoboda, A. Vyrostkova, A. Kroupa, Met. Sci., A, 402, 288 (2005).
16.J.B. Lupton, S. Murphy and J.H. Woodhead, Metall. Trans., 3, 2923 (1972).

17.P.R. Howell, J.V. Bee and R. W.K. Honeycombe, Metall. Trans., 10A, 1213 (1979).

18.K. Campbell and R.W.K. Honeycombe, Metal Sci., 8, 197 (1974).

19.M.H. Lewis and B. Hattersley, Acta Metall., 13, 1159 (1965).

20.N. Terao and B. Sasmal, Transactions of the Japan Institute of Metals., 22, 6, 379 (1981).

21.Y.L. Lin, C.P. Chou, Scripta Metall., 27, 67 (1992).

22.蔡明欽,“鋼顯微組織與性質”,五南圖書股份有限公司 (2004)。

23.R.K. You, P.W. Kao and D. Gan, Mater. Sci. Eng., A117, 141 (1989).

24.S.M. Chu, P.W. Kao and D. Gan, Scripta Metall. Et Mater., 26, 1067 (1992).

25.C.S. Wang, C.N. Hwang, C.G. Chao and T.F. Liu, Scripta Mater., 57, 809 (2007).

26.K.H. Han, J.C. Yoon, W.K. Choo, Scripta Metall., 20, 33 (1986).
27.Y.G. Kim, Y.S. Park and J.K. Han, Metall. Trans. A, 16, 1689 (1985).
28.Y.G. Kim, J.K. Han and E.W. Lee, Metall. Trans. A, 17, 2097 (1986).
29.C.Y Chao, C.N. Hwang and T.F. Liu, Scripta Metall. Et Mater., 28, 109 (1993).

30.J.W. Lee and T.F. Liu, Materials Chemistray and Physics, 69, 192(2001)
31.C.S. Wang,C.N. Hwang, C.G. Chao and T.F. Liu, Scripta Mater., 57, 809 (2004).

32.M.C. Li, H. Chang, P.W. Kao, Mat Chem and Phys., 59, 96 (1999).
33.蘇文淵,“鐵-30.1錳-0.64碳合金鋼之恆溫熱處理相變化研究”,國立台灣科技大學,碩士論文(2009)。

QR CODE