簡易檢索 / 詳目顯示

研究生: 張學宇
Hsueh - Yu Chang
論文名稱: 基於時頻分析之超音波加工製程監控
Monitoring of Ultrasonic Machining Process by Time-Frequency Analysis
指導教授: 劉孟昆
Meng-kun Liu
口試委員: 周振嘉
Chen-chia Chou
藍振洋
Chen-yang Lan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 99
中文關鍵詞: 超音波加工時頻分析希爾伯特-黃轉換訊號處理
外文關鍵詞: Ultrasonic machining, Time-Frequency analysis, Hilbert-Huang Transform, signal processing
相關次數: 點閱:442下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超音波加工為硬脆性材料中最常見的加工方式之一。其工件品質會因刀具振幅、磨料種類與粒徑大小等加工參數不同而受到影響,因此以往的文獻多半與優化加工參數以提升表面品質有關,鮮少有人討論加工時產生的訊號與工件品質之關連性。此外目前並無有效方法監控超音波製程,往往須等到加工結束後才有辦法得知工件品質好壞,而且無法對超音波機台進行校正動作。
    本研究藉由動力計擷取超音波加工玻璃材料時產生的力量訊號,並透過經驗模態分解(Empirical Mode Decomposition)解析出「空蝕作用」及「衝擊與鎚擊作用」之振動模態。經由擷取上述兩種模態所對應之邊際頻譜、能量大小與平均頻率之特徵,建立一套能夠由力量訊號辨別超音波機台穩定性及工件品質的機制,可用於監控超音波加工製程。此外實驗中所使用的變幅桿與刀具均為自行設計,除了利用ANSYS的模態分析(Modal Analysis)與簡諧響應分析(Harmonic Response Analysis)外,也量測當變幅桿於無負載狀態時,其振幅與頻率大小是否與模擬結果相符,達到提升設計準確性之目的。


    Ultrasonic machining is one of the most common methods in brittle materials. The quality of workpiece is usually influenced by processing parameters, such as abrasive particle and tool amplitude. In the past, most of the literature focused on optimization of processing parameters to improve the surface quality and few people studied in the connection between signals and workpiece quality. Besides, there is no way to monitor the ultrasonic process. In general, we can’t understand the workpiece quality and calibrate the machine before the end of machining.
    This study will use the dynamometer to capture force signal during machining, and the Empirical Mode Decomposition is applied to analyze the vibration mode, including cavitation effect, impact and hammer effect. After capturing the characteristics of the vibration mode, such as Marginal Spectrum, power, and mean frequency, we establish a measurement mechanism which can distinguish the stability of machine and workpiece quality by force signal. This measure mechanism can be also applied to monitor the ultrasonic machining process. Furthermore, the tool and horn are self-designed. In order to enhance the design accuracy, we not only used modal analysis and harmonic response analysis in ANSYS but ensure the result is as same as the measurement when the horn is without loading.

    摘要 I Abstract II 致謝 III 表索引 VI 圖索引 VII 符號表 XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 論文架構 5 第二章 超音波加工理論 7 2.1 超音波原理與特性 7 2.2 超音波加工原理 9 2.3 超音波加工系統 11 2.4 超音波加工參數 16 第三章 變幅桿設計與驗證 19 3.1 公式解析法 21 3.2 ANSYS有限元素分析 23 3.3 變幅桿數值模擬結果 31 3.4 變幅桿實際量測結果 34 第四章 實驗設置與方法 42 4.1 實驗設備 42 4.2 實驗規劃 45 4.3 實驗流程 46 4.4 分析方法 50 第五章 實驗結果分析 55 5.1 空振訊號分析結果 55 5.2 實切訊號分析結果 60 5.3 結論 89 第六章 結論與未來展望 91 6.1 結論 91 6.2 研究限制與未來展望 92 參考文獻 93 附錄A 96

    [1] Wood, Robert Williams; Loomis, Alfred L.xxxviii. The physical and biological effects of high-frequency sound-waves of great intensity. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 1927, 4.22: 417-436.
    [2] Balamuth, L.A. Method of abrading, British Patent 602,801, 1945.
    [3] Liu, Jun Wei; Baek, Dae Kyun; Ko, Tae Jo. Chipping minimization in drilling ceramic materials with rotary ultrasonic machining. The International Journal of Advanced Manufacturing Technology, 2014, 72.9-12: 1527-1535.
    [4] Shaw, M. C. Ultrasonic grinding Microtechnic, 10 (6) (1956).
    [5] Miller, George E. Special theory of ultrasonic machining. Journal of Applied physics, 1957, 28.2: 149-156.
    [6] Cook, N. H. Manufacturing analysis, Addison–Wesley, New York, 1966.
    [7] Wang, Jingsi, et al. Material removal during ultrasonic machining using smoothed particle hydrodynamics. Journal ref: International Journal of Automation Technology, 2013, 7.6: 614-620.
    [8] Nath, Chandra; Lim, G. C.; Zheng, H. Y. Influence of the material removal mechanisms on hole integrity in ultrasonic machining of structural ceramics.Ultrasonics, 2012, 52.5: 605-613.
    [9] Soundararajan, V.; Radhakrishnan, V. An experimental investigation on the basic mechanisms involved in ultrasonic machining. International Journal of Machine Tool Design and Research, 1986, 26.3: 307-321.

    [10] Cherku, Sreenidhi; Sundaram, Murali M.; Rajurkar, Kamlakar P. Experimental study of microultrasonic machining process. Center for nontraditional manufacturing research, Lincoln, Nebraska, 2008.
    [11] Das, S.; Doloi, B.; Bhattacharyya, B. Experimental Investigation Of Ultrasonic Machining On Alumina Bio-Ceramic For Stepped Hole Fabrication.
    [12] Yu, Z.; Hu, Xu; Rajurkar, Kamlakar P. Influence of debris accumulation on material removal and surface roughness in micro ultrasonic machining of silicon. CIRP Annals-Manufacturing Technology, 2006, 55.1: 201-204.
    [13] Pei, W., et al. Influence of abrasive particle movement in micro USM.Procedia CIRP, 2013, 6: 551-555.
    [14] Rajurkar, K. P.; Sundaram, Murali M. Process Improvement In Micro USM and Micro EDM.
    [15] Thoe, T. B.; Aspinwall, D. K.; Wise, M. L. H. Review on ultrasonic machining. International Journal of Machine Tools and Manufacture, 1998, 38.4: 239-255.
    [16] Amin, S. G.; Ahemd, M. H. M.; Youssef, H. A. Computer-aided design of acoustic horns for ultrasonic machining using finite-element analysis. Journal of Materials Processing Technology, 1995, 55.3: 254-260.
    [17] Seah, K. H. W.; Wong, Y. S.; LEE, L. C. Design of tool holders for ultrasonic machining using FEM. Journal of Materials Processing Technology, 1993, 37.1-4: 801-816.
    [18] Kei, K. U. O. Ultrasonic vibrating system design and tool analysis.Transactions of Nonferrous Metals Society of China, 2009, 19: s225-s231.
    [19] Choi, Young-Jae, et al. Effect of ultrasonic vibration in grinding; horn design and experiment. International Journal of Precision Engineering and Manufacturing, 2013, 14.11: 1873-1879.
    [20] Wang, Dung-An; Nguyen, Hai-Dang. A planar Bézier profiled horn for reducing penetration force in ultrasonic cutting. Ultrasonics, 2014, 54.1: 375-384.
    [21] Cooley, James W.; Tukey, John W. An algorithm for the machine calculation of complex Fourier series. Mathematics of computation, 1965, 19.90: 297-301.
    [22] Qian, Shie; Chen, Dapang. Joint time-frequency analysis. IEEE Signal Processing Magazine, 1999, 16.2: 52-67.
    [23] Okamura, Shuhei. The short time Fourier transform and local signals. 2011.
    [24] Huang, Norden E., et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1998.
    [25] 超音波控制原理:http://eshare.stust.edu.tw/EshareFile/2010_4/2010_4_f89b9bdf.pdf
    [26] 陳精一,ANSYS振動學實務分析,高立圖書有限公司,(2005)
    [27] Barnhart, Bradley Lee. The Hilbert-Huang transform: theory, applications, development. 2011.
    [28] Al-Okaily, Ala'a M. Adaptive Cutting Force Control for Process Stability of Micro Ultrasonic Machining. 2010.
    [29] 材料性質資料庫:http://www.matweb.com

    無法下載圖示 全文公開日期 2021/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE