簡易檢索 / 詳目顯示

研究生: 陳智靈
Cecilia Adena
論文名稱: 製備金屬氧化物於有機金屬框架作為分解二氧化碳之觸媒
Preparation of Metal Oxide Composite in Metal Organic Framework for CO2 Catalytic Decomposition
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 今榮東洋子
Toyoko Imae
氏原真樹
Masaki Ujihara
周宏隆
Hung-Lung Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 42
中文關鍵詞: 奈米觸媒有機金屬框架氧化銅氧化鋅飛秒雷射氫化二氧化碳
外文關鍵詞: nanocatalyst, metal organic framework, copper oxide, zinc oxide, femtosecond laser, hydrogenation, carbon dioxide
相關次數: 點閱:248下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近來,具有前景的光觸媒二氧化碳分解已在化學碳循環中成功扮演了重要的角色並獲得更多關注。本研究製備了金屬氧化物並結合在有機金屬框架中以增進二氧化碳的氫化反應。銅和鋅離子在室溫液相環境中被飛秒雷射氧化。產生的奈米材料以X光繞射、掃描式電子顯微鏡、能量分散光譜、高解析度穿透式電子顯微鏡、傅立葉轉換紅外線光譜儀以及紫外光與可見光吸收光譜儀進行表徵。此外,光觸媒反應在紫外光下進行且產物由量熱法進行評估。本研究結果顯示此奈米複合材料可以展現有效率的光觸媒反應表現。


Recently, a promising strategy for photocatalytic decomposition of CO2 has gained a lot of attention as one of the important processes for chemical carbon cycle. In this study metal oxide composites were synthesized and combined with metal organic framework to improve the hydrogenation of CO2. The copper and zinc ion were oxidize using femtosecond laser in liquid phase at room temperature. The produced nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, energy dispersion spectroscopy, high resolution transmission electron microscopy, fourier transform infrared and ultraviolet visible absorption spectra. Furthermore, the photocatalytic reaction was conducted using UV light and the product was evaluated by calorimetric. The result indicates that the nanocomposite can exhibit effective photocatalytic performance.

ABSTRACT iii 摘要 iv ACKNOWLEDGEMENT v ABBREVIATIONS vi TABLE OF CONTENTS vii LIST OF FIGURES x LIST OF TABLES xi CHAPTER 1 1 INTRODUCTION 1 1.1 Background 1 1.2 Objectives 3 CHAPTER 2 4 LITERATURE REVIEW 4 2.1 Metal Organic Framework (MOF) 4 2.2 Zeolitic Imidazole Frameworks (ZIF) 5 2.3 Zinc Oxide – Copper Oxide (ZnO – CuO) Catalyst 7 2.4 Femtosecond laser 8 2.5 Chitosan polymer 9 2.6 Hydrogenation of carbon dioxide (CO2) to methanol 11 CHAPTER 3 12 MATERIAL AND METHOD 12 3.1 Materials 12 3.2 Apparatus 12 3.3 Methods 12 3.3.1 Synthesis of ZIF-8 12 3.3.2 Synthesis of CuO@ZIF-8 13 3.3.3 Synthesis of CuO@ZIF-8@ZnO 13 3.3.4 Preparation of aqueous chitosan dispersion 14 3.3.5 Preparation of CuO@ZIF-8@ZnO-CS thin film 14 3.3.6 Preparation of chromatic reagent for methanol detection 14 3.3.7 Photochemical reduction of CO2 gas (photocatalysis) 15 3.4 Characterization 15 3.4.1 Femtosecond Laser (FSL) 15 3.4.2 X-ray diffraction analysis (XRD) 16 3.4.3 Fourier transform infrared (FTIR) absorption spectra 16 3.4.4 Field emission scanning electron microscope (FE-SEM) and energy dispersion spectroscopy (EDS) 16 3.4.5 High resolution transmission electron microscope (HRTEM) 16 3.4.6 Standardization of methanol concentration using a chromatic reagent 16 3.4.7 Determination mass of catalyst (CuO-ZnO) in CuO@ZIF-8@ZnO 18 3.4.8 Determination of methanol concentration after photocatalysis 19 CHAPTER 4 20 RESULTS AND DISCUSSIONS 20 4.1 Characterization of ZnO/CuO@ZIF-8 nanocomposite 20 4.1.1 X-ray diffraction (XRD) analysis 20 4.1.2 Field Emission Scanning Electron Microscope (FE-SEM) analysis 23 4.1.3 High resolution transmission electron microscope (HRTEM) analysis 25 4.1.4 Fourier-Transform Infrared (FTIR) spectroscopy analysis 26 CHAPTER 5 32 CONCLUSION AND FUTURE WORK 32 5.1 Conclusion 32 5.2 Future Work 32 Illustration 33 REFERENCES 34

Abdollahi, B., Najafidoust, A., Abbasi Asl, E., & Sillanpaa, M. (2021). Fabrication of ZiF-8 metal organic framework (MOFs)-based CuO-ZnO photocatalyst with enhanced solar-light-driven property for degradation of organic dyes. Arabian Journal of Chemistry, 14(12), 103444. https://doi.org/10.1016/j.arabjc.2021.103444
Aghaei, M., Sajjadi, S., & Keihan, A. H. (2020). Sono-coprecipitation synthesis of ZnO/CuO nanophotocatalyst for removal of parathion from wastewater. Environmental Science and Pollution Research, 27(11), 11541–11553. https://doi.org/10.1007/s11356-020-07680-0
Al-Haddad, M., Shawky, A., & Mkhalid, I. A. (2021). Highly active ZIF-8 derived CuO@ZnO p-n heterojunction nanostructures for fast visible-light-driven photooxidation of antibiotic waste in water. Journal of the Taiwan Institute of Chemical Engineers, 123, 284–292. https://doi.org/10.1016/j.jtice.2021.05.028
Athikaphan, P., Neramittagapong, S., Assawasaengrat, P., & Neramittagapong, A. (2020). Methanol production from CO2 reduction over Ni/TiO2 catalyst. Energy Reports, 6, 1162–1166. https://doi.org/10.1016/j.egyr.2020.11.059
Baig, R. B. N., Nadagouda, M. N., & Varma, R. S. (2014). Ruthenium on chitosan: A recyclable heterogeneous catalyst for aqueous hydration of nitriles to amides. Green Chemistry, 16(4), 2122–2127. https://doi.org/10.1039/c3gc42004c
Baig, R. B. N., & Varma, R. S. (2013). Copper on chitosan: A recyclable heterogeneous catalyst for azide-alkyne cycloaddition reactions in water. Green Chemistry, 15(7), 1839–1843. https://doi.org/10.1039/c3gc40401c
Banerjee, R., Furukawa, H., Britt, D., Knobler, C., O’Keeffe, M., & Yaghi, O. M. (2009). Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. Journal of the American Chemical Society, 131(11), 3875–3877. https://doi.org/10.1021/ja809459e
Bao, Q., Lou, Y., Xing, T., & Chen, J. (2013). Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) in aqueous solution via microwave irradiation. Inorganic Chemistry Communications, 37, 170–173. https://doi.org/10.1016/j.inoche.2013.09.061
Cao, L., Li, Z., Hao, X., Zhang, Y., & Wang, W. (2009). Synthesis of Cu/Cu2O core/multi-shelled microcrystal via shape and structure transformation of pre-grown crystals. Journal of Alloys and Compounds, 475(1–2), 600–607. https://doi.org/10.1016/j.jallcom.2008.07.120
Chakraborty, A., Islam, D. A., & Acharya, H. (2019). Facile synthesis of CuO nanoparticles deposited zeolitic imidazolate frameworks (ZIF-8) for efficient photocatalytic dye degradation. Journal of Solid State Chemistry, 269(September 2018), 566–574. https://doi.org/10.1016/j.jssc.2018.10.036
Chizallet, C., Lazare, S., Bazer-Bachi, D., Bonnier, F., Lecocq, V., Soyer, E., Quoineaud, A. A., & Bats, N. (2010). Catalysis of transesterification by a nonfunctionalized metal-organic framework: Acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations. Journal of the American Chemical Society, 132(35), 12365–12377. https://doi.org/10.1021/ja103365s
Choy, J. H., Jang, E. S., Won, J. H., Chung, J. H., Jang, D. J., & Kim, Y. W. (2003). Soft Solution Route to Directionally Grown ZnO Nanorod Arrays on Si Wafer; Room-Temperature Ultraviolet Laser. Advanced Materials, 15(22), 1911–1914. https://doi.org/10.1002/adma.200305327
Collins, C. S., Sun, D., Liu, W., Zuo, J. L., & Zhou, H. C. (2008). Reaction-condition-controlled formation of secondary-building-units in three cadmium metal-organic frameworks with an orthogonal tetrakis(tetrazolate) ligand. Journal of Molecular Structure, 890(1–3), 163–169. https://doi.org/10.1016/j.molstruc.2008.04.038
Fairen-Jimenez, D., Moggach, S. A., Wharmby, M. T., Wright, P. A., Parsons, S., & Düren, T. (2011). Opening the gate: Framework flexibility in ZIF-8 explored by experiments and simulations. Journal of the American Chemical Society, 133(23), 8900–8902. https://doi.org/10.1021/ja202154j
Gascon, J., Aguado, S., & Kapteijn, F. (2008). Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina. Microporous and Mesoporous Materials, 113(1–3), 132–138.
Gemeda, G. F., Hwang, W. J., Imae, T. (2022). Femtosecond pulse laser fabrication of zinc oxide quantum clusters/nanoparticles and their electrical, optical, and chemical characteristics. Journal of Colloid and Interface Science, 614, 310-321.
Gong, Y., Zhou, Y. C., Yang, H., Zhang, H. X., Proserpio, D. M., & Zhang, J. (2011). A new approach towards tetrahedral imidazolate frameworks for high and selective CO2 uptake. Chemical Communications, 47(20), 5828–5830. https://doi.org/10.1039/c1cc10829h
Hayashi, H., Côté, A. P., Furukawa, H., O’Keeffe, M., & Yaghi, O. M. (2007). Zeolite A imidazolate frameworks. Nature Materials, 6(7), 501–506. https://doi.org/10.1038/nmat1927
Hobday, C. L., Woodall, C. H., Lennox, M. J., Frost, M., Kamenev, K., Düren, T., Morrison, C. A., & Moggach, S. A. (2018). Understanding the adsorption process in ZIF-8 using high pressure crystallography and computational modelling. Nature Communications, 9(1), 1–9. https://doi.org/10.1038/s41467-018-03878-6
Huang, X., Zhang, J., & Chen, X. (2003). [Zn(bim)2] · (H2O)1.67: A metal-organic open-framework with sodalite topology. Chinese Science Bulletin, 48(15), 1531–1534. https://doi.org/10.1007/bf03183954
Ishikawa, Y., Shimizu, Y., Sasaki, T., & Koshizaki, N. (2006). Preparation of zinc oxide nanorods using pulsed laser ablation in water media at high temperature. Journal of Colloid and Interface Science, 300(2), 612–615. https://doi.org/10.1016/j.jcis.2006.04.005
Jian, M., Liu, B., Liu, R., Qu, J., Wang, H., & Zhang, X. (2015). Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Advances, 5(60), 48433–48441. https://doi.org/10.1039/c5ra04033g
Jiang, H. L., Liu, B., Akita, T., Haruta, M., Sakurai, H., & Xu, Q. (2009). Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. Journal of the American Chemical Society, 131(32), 11302–11303. https://doi.org/10.1021/ja9047653
Jin, Y., Wu, J., Wang, J., Fan, Y., Zhang, S., Ma, N., & Dai, W. (2020). Highly efficient capture of benzothiophene with a novel water-resistant-bimetallic Cu-ZIF-8 material. Inorganica Chimica Acta, 503(January). https://doi.org/10.1016/j.ica.2020.119412
Joseph, S. (2012). Ultrasound assisted semiconductor mediated catalytic degradation of organic pollutants in water: Comparative efficacy of ZnO, TiO 2 and ZnO-TiO 2. Research Journal of Recent Sciences, 1(January 2012), 191.
Kanjwal, M. A., Chronakis, I. S., & Barakat, N. A. M. (2015). Electrospun NiO, ZnO and composite NiO–ZnO nanofibers/photocatalytic degradation of dairy effluent. Ceramics International, 41(9), 12229–12236. https://doi.org/10.1016/j.ceramint.2015.06.045
Khoza, P., & Nyokong, T. (2015). Photocatalytic behaviour of zinc tetraamino phthalocyanine-silver nanoparticles immobilized on chitosan beads. Journal of Molecular Catalysis A: Chemical, 399, 25–32. https://doi.org/10.1016/j.molcata.2015.01.017
Kim, J., Kim, W., & Yong, K. (2012). CuO/ZnO heterostructured nanorods: Photochemical synthesis and the mechanism of H 2S gas sensing. Journal of Physical Chemistry C, 116(29), 15682–15691. https://doi.org/10.1021/jp302129j
Kresge, C. T., & Roth, W. J. (2013). The discovery of mesoporous molecular sieves from the twenty year perspective. Chemical Society Reviews, 42(9), 3663–3670. https://doi.org/10.1039/c3cs60016e
Kumar, P., Joshi, C., Barras, A., Sieber, B., Addad, A., Boussekey, L., Szunerits, S., Boukherroub, R., & Jain, S. L. (2017). Core–shell structured reduced graphene oxide wrapped magnetically separable rGO@CuZnO@Fe3O4 microspheres as superior photocatalyst for CO2 reduction under visible light. Applied Catalysis B: Environmental, 205, 654–665. https://doi.org/10.1016/j.apcatb.2016.11.060
Kuppler, R. J., Timmons, D. J., Fang, Q. R., Li, J. R., Makal, T. A., Young, M. D., Yuan, D., Zhao, D., Zhuang, W., & Zhou, H. C. (2009). Potential applications of metal-organic frameworks. Coordination Chemistry Reviews, 253(23–24), 3042–3066. https://doi.org/10.1016/j.ccr.2009.05.019
Latroche, M., Surblé, S., Serre, C., Mellot-Draznieks, C., Llewellyn, P. L., Lee, J.-H., Chang, J.-S., Jhung, S. H., & Férey, G. (2006). Hydrogen Storage in the Giant-Pore Metal–Organic Frameworks MIL-100 and MIL-101. Angewandte Chemie, 118(48), 8407–8411. https://doi.org/10.1002/ange.200600105
Lei, X., Cao, Y., Chen, Q., Ao, X., Fang, Y., & Liu, B. (2019). ZIF-8 derived hollow CuO/ZnO material for study of enhanced photocatalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 568(January), 1–10. https://doi.org/10.1016/j.colsurfa.2019.01.072
Li, D., Qin, L., Zhao, P., Zhang, Y., Liu, D., Liu, F., Kang, B., Wang, Y., Song, H., Zhang, T., & Lu, G. (2018). Preparation and gas-sensing performances of ZnO/CuO rough nanotubular arrays for low-working temperature H2S detection. Sensors and Actuators, B: Chemical, 254, 834–841. https://doi.org/10.1016/j.snb.2017.06.110
Li, K., Olson, D. H., Seidel, J., Emge, T. J., Gong, H., Zeng, H., & Li, J. (2009). Zeolitic imidazolate frameworks for kinetic separation of propane and propene. Journal of the American Chemical Society, 131(30), 10368–10369. https://doi.org/10.1021/ja9039983
Li, S., Wang, Y., Yang, B., & Guo, L. (2019). A highly active and selective mesostructured Cu/AlCeO catalyst for CO2 hydrogenation to methanol. Applied Catalysis A: General, 571, 51–60. https://doi.org/10.1016/j.apcata.2018.12.008
Li, W., Liu, J., & Zhao, D. (2016). Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 1(6). https://doi.org/10.1038/natrevmats.2016.23
Linares, N., Silvestre-Albero, A. M., Serrano, E., Silvestre-Albero, J., & García-Martínez, J. (2014). Mesoporous materials for clean energy technologies. Chemical Society Reviews, 43(22), 7681–7717. https://doi.org/10.1039/c3cs60435g
Liu, Q. X., Wang, C. X., Zhang, W., & Wang, G. W. (2003). Immiscible silver-nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction. Chemical Physics Letters, 382(1–2), 1–5. https://doi.org/10.1016/j.cplett.2003.10.004
Liu, Y., Hu, E., Khan, E. A., & Lai, Z. (2010). Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. Journal of Membrane Science, 353(1–2), 36–40. https://doi.org/10.1016/j.memsci.2010.02.023
Lu, G., & Hupp, J. T. (2010). Metal-organic frameworks as sensors: A ZIF-8 based fabry-pérot device as a selective sensor for chemical vapors and gases. Journal of the American Chemical Society, 132(23), 7832–7833. https://doi.org/10.1021/ja101415b
Mansournia, M., & Ghaderi, L. (2017). CuO@ZnO core-shell nanocomposites: Novel hydrothermal synthesis and enhancement in photocatalytic property. Journal of Alloys and Compounds, 691, 171–177. https://doi.org/10.1016/j.jallcom.2016.08.267
Manzano, M., & Vallet-Regí, M. (2010). New developments in ordered mesoporous materials for drug delivery. Journal of Materials Chemistry, 20(27), 5593–5604. https://doi.org/10.1039/b922651f
Meng, J., Chen, Q., Lu, J., & Liu, H. (2019). Z-Scheme Photocatalytic CO 2 Reduction on a Heterostructure of Oxygen-Defective ZnO/Reduced Graphene Oxide/UiO-66-NH 2 under Visible Light. ACS Applied Materials and Interfaces, 11(1), 550–562. https://doi.org/10.1021/acsami.8b14282
Miao, Q., Mi, Y., Cui, J., Zhang, J., Tan, W., Li, Q., & Guo, Z. (2021). Determination of chitosan content with Schiff base method and HPLC. International Journal of Biological Macromolecules, 182, 1537–1542. https://doi.org/10.1016/j.ijbiomac.2021.05.121
Moggach, S. A., Bennett, T. D., & Cheetham, A. K. (2009). The effect of pressure on ZIF-8: Increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. Angewandte Chemie - International Edition, 48(38), 7087–7089. https://doi.org/10.1002/anie.200902643
Mohanasrinivasan, V., Mishra, M., Paliwal, J. S., Singh, S. Kr., Selvarajan, E., Suganthi, V., & Subathra Devi, C. (2014). Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. 3 Biotech, 4(2), 167–175. https://doi.org/10.1007/s13205-013-0140-6
Moratti, S. C., & Cabral, J. D. (2017). Antibacterial properties of chitosan (In Chitosa). Elsevier.
Nagarjun, N., & Dhakshinamoorthy, A. (2019). A Cu-Doped ZIF-8 metal organic framework as a heterogeneous solid catalyst for aerobic oxidation of benzylic hydrocarbons. New Journal of Chemistry, 43(47), 18702–18712. https://doi.org/10.1039/c9nj03698a
Nassar, N. N., & Husein, M. M. (2007). Effect of microemulsion variables on copper oxide nanoparticle uptake by AOT microemulsions. Journal of Colloid and Interface Science, 316(2), 442–450. https://doi.org/10.1016/j.jcis.2007.08.044
Nath, A., & Khare, A. (2011). Size induced structural modifications in copper oxide nanoparticles synthesized via laser ablation in liquids. Journal of Applied Physics, 110(4). https://doi.org/10.1063/1.3626463
O’Keeffe, M., Eddaoudi, M., Li, H., Reineke, T., & Yaghi, O. M. (2000). Frameworks for extended solids: Geometrical design principles. Journal of Solid State Chemistry, 152(1), 3–20. https://doi.org/10.1006/jssc.2000.8723
Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M., & Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 103(27), 10186–10191. https://doi.org/10.1073/pnas.0602439103
Park, W. I., Kim, D. H., Jung, S. W., & Yi, G. C. (2002). Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Applied Physics Letters, 80(22), 4232–4234. https://doi.org/10.1063/1.1482800
Park, Y. K., Sang, B. C., Kim, H., Kim, K., Won, B. H., Choi, K., Choi, J. S., Ahn, W. S., Won, N., Kim, S., Dong, H. J., Choi, S. H., Kim, G. H., Cha, S. S., Young, H. J., Jin, K. Y., & Kim, J. (2007). Crystal structure and guest uptake of a mesoporous metal-organic framework containing cages of 3.9 and 4.7 nm in diameter. Angewandte Chemie - International Edition, 46(43), 8230–8233. https://doi.org/10.1002/anie.200702324
Pozan, G. S., & Kambur, A. (2014). Significant enhancement of photocatalytic activity over bifunctional ZnO-TiO2 catalysts for 4-chlorophenol degradation. Chemosphere, 105, 152–159. https://doi.org/10.1016/j.chemosphere.2014.01.022
Prasanth, K. P., Rallapalli, P., Raj, M. C., Bajaj, H. C., & Jasra, R. V. (2011). Enhanced hydrogen sorption in single walled carbon nanotube incorporated MIL-101 composite metal-organic framework. International Journal of Hydrogen Energy, 36(13), 7594–7601. https://doi.org/10.1016/j.ijhydene.2011.03.109
Qiu, S., & Zhu, G. (2009). Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties. Coordination Chemistry Reviews, 253(23–24), 2891–2911. https://doi.org/10.1016/j.ccr.2009.07.020
Rettig, S. J., Storr, A., Summers, D. A., Thompson, R. C., & Trotter, J. (1999). Iron(II) 2-methylimidazolate and copper(II) 1,2,4-triazolate complexes: Systems exhibiting long-range ferromagnetic ordering at low temperatures. Canadian Journal of Chemistry, 77(4), 425–433. https://doi.org/10.1139/v99-063
Rowsell, J. L. C., & Yaghi, O. M. (2004). Metal-organic frameworks: A new class of porous materials. Microporous and Mesoporous Materials, 73(1–2), 3–14. https://doi.org/10.1016/j.micromeso.2004.03.034
Saini, S., Prabhu, Y. T., Sreedhar, B., Prajapati, P. K., Pal, U., & Jain, S. L. (2020). Visible light induced α-amino acid synthesis from carbon dioxide using nanostructured ZnO/CuO heterojunction photocatalyst. Materialia, 12(June). https://doi.org/10.1016/j.mtla.2020.100777
Saravanakkumar, D., Sivaranjani, S., Kaviyarasu, K., Ayeshamariam, A., Ravikumar, B., Pandiarajan, S., Veeralakshmi, C., Jayachandran, M., & Maaza, M. (2018). Synthesis and characterization of ZnO-CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigation. Journal of Semiconductors, 39(3). https://doi.org/10.1088/1674-4926/39/3/033001
Sathishkumar, P., Sweena, R., Wu, J. J., & Anandan, S. (2011). Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution. Chemical Engineering Journal, 171(1), 136–140. https://doi.org/10.1016/j.cej.2011.03.074
Senasu, T., Chankhanittha, T., Hemavibool, K., & Nanan, S. (2021). Visible-light-responsive photocatalyst based on ZnO/CdS nanocomposite for photodegradation of reactive red azo dya and ofloxacin antibiotic. Materials Science in Semiconductor Processing, 123, 105558.
Serre, C., Millange, F., Surblé, S., & Férey, G. (2004). A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. Angewandte Chemie - International Edition, 43(46), 6285–6289. https://doi.org/10.1002/anie.200454250
Shah, K. J., & Imae, T. (2016). Analytical investigation of specific adsorption kinetics of CO2 gas on dendrimer loaded in organoclays. Chemical Engineering Journal, 283, 1366–1373. https://doi.org/10.1016/j.cej.2015.08.113
Shah, K. J., & Imae, T. (2017). Photoinduced enzymatic conversion of CO2 gas to solar fuel on functional cellulose nanofiber films. Journal of Materials Chemistry A, 5(20), 9691–9701. https://doi.org/10.1039/c7ta01861d
Shah, K. J., Imae, T., Ujihara, M., Huang, S. J., Wu, P. H., & Liu, S. bin. (2017). Poly(amido amine) dendrimer-incorporated organoclays as efficient adsorbents for capture of NH3and CO2. Chemical Engineering Journal, 312, 118–125. https://doi.org/10.1016/j.cej.2016.11.125
Sun, L., Zhang, L., Liang, C., Yuan, Z., Zhang, Y., Xu, W., Zhang, J., & Chen, Y. (2011). Chitosan modified Fe0 nanowires in porous anodic alumina and their application for the removal of hexavalent chromium from water. Journal of Materials Chemistry, 21(16), 5877–5880. https://doi.org/10.1039/c1jm10205b
Tian, Y. Q., Cai, C. X., Ren, X. M., Duan, C. Y., Xu, Y., Gao, S., & You, X. Z. (2003). The Silica-Like Extended Polymorphism of Cobalt(II) Imidazolate Three-Dimensional Frameworks: X-ray Single-Crystal Structures and Magnetic Properties. Chemistry - A European Journal, 9(22), 5673–5685. https://doi.org/10.1002/chem.200304957
Tilaki, R. M., Zad, A. I., & Mahdavi, S. M. (2007). Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids. Applied Physics A: Materials Science and Processing, 88(2), 415–419. https://doi.org/10.1007/s00339-007-4000-2
Tuncel, D., & Ökte, A. N. (2019). ZnO@CuO derived from Cu-BTC for efficient UV-induced photocatalytic applications. Catalysis Today, 328(October 2018), 149–156. https://doi.org/10.1016/j.cattod.2018.10.049
Tursunov, O., Kustov, L., & Tilyabaev, Z. (2017). Methanol synthesis from the catalytic hydrogenation of CO2 over CuO–ZnO supported on aluminum and silicon oxides. Journal of the Taiwan Institute of Chemical Engineers, 78, 416–422. https://doi.org/10.1016/j.jtice.2017.06.049
Vaghari, H., Jafarizadeh-Malmiri, H., Berenjian, A., & Anarjan, N. (2013). Recent advances in application of chitosan in fuel cells. Sustainable Chemical Processes, 1(1). https://doi.org/10.1186/2043-7129-1-16
Venna, S. R., Jasinski, J. B., & Carreon, M. A. (2010). Structural evolution of zeolitic imidazolate framework-8. Journal of the American Chemical Society, 132(51), 18030–18033. https://doi.org/10.1021/ja109268m
Wagner, T., Haffer, S., Weinberger, C., Klaus, D., & Tiemann, M. (2013). Mesoporous materials as gas sensors. Chemical Society Reviews, 42(9), 4036–4053. https://doi.org/10.1039/c2cs35379b
Wang, C., Wang, X., Xu, B. Q., Zhao, J., Mai, B., Peng, P., Sheng, G., & Fu, J. (2004). Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation. Journal of Photochemistry and Photobiology A: Chemistry, 168(1–2), 47–52. https://doi.org/10.1016/j.jphotochem.2004.05.014
Wang, W., Xu, D., Cheng, B., Yu, J., & Jiang, C. (2017). Hybrid carbon@TiO2 hollow spheres with enhanced photocatalytic CO2 reduction activity. Journal of Materials Chemistry A, 5(10), 5020–5029. https://doi.org/10.1039/c6ta11121a
Wang, X., Hu, C., Liu, H., Du, G., He, X., & Xi, Y. (2010). Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sensors and Actuators, B: Chemical, 144(1), 220–225. https://doi.org/10.1016/j.snb.2009.09.067
Wang, Z. jun, Song, H., Pang, H., Ning, Y., Dao, T. D., Wang, Z., Chen, H., Weng, Y., Fu, Q., Nagao, T., Fang, Y., & Ye, J. (2019). Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts. Applied Catalysis B: Environmental, 250, 10–16. https://doi.org/10.1016/j.apcatb.2019.03.003
Wu, H., Reali, R. S., Smith, D. A., Trachtenberg, M. C., & Li, J. (2010). Highly selective CO2 capture by a flexible microporous metal-organic framework (MMOF) material. In Chemistry - A European Journal (Vol. 16, Issue 47, pp. 13951–13954). https://doi.org/10.1002/chem.201002683
Wu, H., Zhou, W., & Yildirim, T. (2007). Hydrogen storage in a prototypical zeolitic imidazolate framework-8. Journal of the American Chemical Society, 129(17), 5314–5315. https://doi.org/10.1021/ja0691932
Yadav, R., & Sinha, A. K. (2017). Titania Cowrapped α-Sulfur Composite as a Visible Light Active Photocatalyst for Hydrogen Evolution Using in Situ Methanol from CO2 as a Sacrificial Agent. ACS Sustainable Chemistry and Engineering, 5(8), 6736–6745. https://doi.org/10.1021/acssuschemeng.7b00996
Yaghi, O. M., Davis, C. E., Li, G., & Li, H. (1997). Selective guest binding by tailored channels in a 3-D porous zinc(II)-benzenetricarboxylate network. Journal of the American Chemical Society, 119(12), 2861–2868. https://doi.org/10.1021/ja9639473
Yan, H., Johnson, J., Law, M., He, R., Knutsen, K., McKinney, J. R., Pham, J., Saykally, R., & Yang, P. (2003). ZnO Nanoribbon Microcavity Lasers. Advanced Materials, 15(22), 1907–1911. https://doi.org/10.1002/adma.200305490
Yang, G. W. (2007). Laser ablation in liquids: Applications in the synthesis of nanocrystals. Progress in Materials Science, 52(4), 648–698. https://doi.org/10.1016/j.pmatsci.2006.10.016
Yang, J. L., An, S. J., Park, W. Il, Yi, G. C., & Choi, W. (2004). Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition. Advanced Materials, 16(18), 1661–1664. https://doi.org/10.1002/adma.200306673
Zainul, R., Effendi, J., & Mashuri, M. (2019). Phototransformation of Linear Alkylbenzene Sulphonate (LAS) Surfactant Using ZnO-CuO Composite Photocatalyst. KnE Engineering, 1(2), 235. https://doi.org/10.18502/keg.v1i2.4448
Zhan, Y. Y., Zhang, Y., Li, Q. M., & Du, X. Z. (2010). A novel visible spectrophotometric method for the determination of methanol using sodium nitroprusside as spectroscopic probe. Journal of the Chinese Chemical Society, 57(2), 230–235. https://doi.org/10.1002/jccs.201000035
Zhan, Y.-Y., Zhang, Y., Li, Q.-M., & Du, X.-Z. (n.d.). A Novel Visible Spectrophotometric Method for the Determination of Methanol Using Sodium Nitroprusside as Spectroscopic Probe.
Zhang, C., Yin, L., Zhang, L., Qi, Y., & Lun, N. (2012). Preparation and photocatalytic activity of hollow ZnO and ZnO-CuO composite spheres. Materials Letters, 67(1), 303–307. https://doi.org/10.1016/j.matlet.2011.09.073
Zhang, J. W., Zhao, C. C., Zhao, Y. P., Xu, H. Q., Du, Z. Y., & Jiang, H. L. (2014). Metal-organic frameworks with improved moisture stability based on a phosphonate monoester: Effect of auxiliary N-donor ligands on framework dimensionality. CrystEngComm, 16(29), 6635–6644. https://doi.org/10.1039/c4ce00655k
Zhang, Y., Russo, R. E., & Mao, S. S. (2005). Femtosecond laser assisted growth of ZnO nanowires. Applied Physics Letters, 87(13), 1–3. https://doi.org/10.1063/1.2061858
Zhao, Y., Tian, J. S., Qi, X. H., Han, Z. N., Zhuang, Y. Y., & He, L. N. (2007). Quaternary ammonium salt-functionalized chitosan: An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. Journal of Molecular Catalysis A: Chemical, 271(1–2), 284–289. https://doi.org/10.1016/j.molcata.2007.03.047
Zhou, J., Dong, Z., Yang, H., Shi, Z., Zhou, X., & Li, R. (2013). Pd immobilized on magnetic chitosan as a heterogeneous catalyst for acetalization and hydrogenation reactions. Applied Surface Science, 279, 360–366. https://doi.org/10.1016/j.apsusc.2013.04.113

無法下載圖示 全文公開日期 2032/08/02 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE