簡易檢索 / 詳目顯示

研究生: 鄧宇桓
Yu-Huan Deng
論文名稱: 以氧化鉿當作閘極絕緣層之小尺寸金屬氧化物薄膜電晶體電性改善之研究
A Study of HfO2 as a Gate Insulator for Improving the Electrical Characteristics of Small Size Metal Oxide Thin-Film Transistors
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Chih-Chien Lee
顏文正
none
蔡永誠
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 124
中文關鍵詞: 二氧化鉿高介電常數材料閘極絕緣層金屬氧化物薄膜電晶體
外文關鍵詞: hafnium oxide, high-k dielectric, gate insulator, metal oxide thin-film transistors
相關次數: 點閱:280下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於金屬氧化物薄膜電晶體獨特的製程特質及材料特性,使它們在新興的薄膜電晶體應用上成為最具有競爭性的選擇,包含均勻性好可以應用在大尺寸的面板、低溫製程而應用於可撓式的結構以及低成本製作等特殊需求的產品上。為了尋求更好的TFT效能,我們將使用高介電常數(High-k)材料二氧化鉿(HfO2)來製備元件之閘極絕緣層(Gate Insulator)並且在本論文中研究及評估以HfO2替代SiO2作為閘極絕緣層之可行性。
首先,我們利用金屬遮罩(Shadow Mask)製作MIM電容以及IGZO-TFT元件,測試HfO2在不同的通氧比例〔O2/(Ar+O2)〕下對薄膜特性以及運用在TFT元件之閘極絕緣層上電特性的影響,依序利用AFM、SEM和C-V量測…等探討其表面粗糙度、介電常數、絕緣能力以及TFT元件電特性結果,發現HfO2薄膜在通氧比例為33%時有最佳的元件電特性。接著,我們利用微影(Photolithography)製程製作小尺寸的TFT元件並同時探討不同通道長度元件的電特性變化、元件閘極經圖案化後對電特性的影響、針對不同通道長度的元件可靠度研究以及電特性的表現均勻度,最後,我們將和在相同製程下以SiO2當作閘極絕緣層之元件及其他同樣使用HfO2當作閘極絕緣層之IGZO-TFT的文獻做電特性的總比較。


Metal oxide semiconductor is considered to be the most competitive TFT material for last decade. It has several advantages such as great uniformity for large size display, low fabrication temperature and low production cost. In order to pursue greater metal oxide TFT performance, high-k dielectric was introduced as a gate insulator in TFT structure. Among all high-k dielectrics, HfO2 is well known for its high dielectric constant and large band gap. Therefore, we will focus on evaluating the basic properties and electrical characteristic of HfO2 as a gate insulator in this study.
To begin with, we fabricated MIM capacitor and IGZO based TFT whose dielectric layer was deposited in different〔O2/ (Ar+O2)〕ratio through shadow mask technique. Next, the roughness and the thickness of HfO2 dielectric layer were demonstrated by AFM and SEM. We discovered that HfO2 film with 33% oxygen pressure ratio has the greatest gate insulator properties due to its roughness, dielectric constant and resistivity. In order to reduce the off current of TFT device, photolithography technology and HfO2 film with 33% oxygen pressure ratio were utilized to fabricate smaller size TFT device. A series of measurements were performed for different channel length of devices including Hystersis, PGBS, NGBS, PGDBS and NGDB. Overall, several comparisons had been made between our device and device which was fabricated in same process but has different gate insulator.

論文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX Chapter 1 概論 1 1.1 研究背景 1 1.2 研究動機與方向 4 1.3 論文大綱 5 Chapter 2 材料介紹與理論基礎 6 2.1 閘極絕緣層高介電材料 6 2.1.1 元件尺寸的發展 6 2.1.2 高介電材料的興起 7 2.1.3 高介電材料的選擇 8 2.1.4 常見的高介電材料的種類 11 2.1.5 高介電材料HfO2之製程方式 11 2.2 金屬氧化物半導體介紹 12 2.2.1 金屬氧化物半導體材料概述 12 2.2.2 非晶氧化銦鎵鋅材料特性與電性影響 12 2.3 非晶金屬氧化物半導體傳輸機制 15 2.4 金屬氧化物薄膜電晶體結構 18 2.5 金屬氧化物薄膜電晶體之製程開發 19 2.5.1 脈衝雷射法 (Pulsed laser deposition, PLD) 19 2.5.2 浸沾法 (Sol-gel) 20 2.5.3 旋轉塗佈 ( Spin coating ) 20 2.5.4 濺鍍法 ( Sputter ) 20 2.6 金屬氧化物膜電晶體操作模式 21 2.7 TFT元件參數萃取方式 25 2.7.1 載子遷移率(Mobility, μ) 25 2.7.2 臨界電壓 (Threshold Voltage, Vth) 27 2.7.3 次臨界斜率 (Subthreshold Swing, S.S) 28 2.7.4 開關電流比(On/Off Current Ratio, IOn/IOff) 28 2.7.5 接觸電阻(Contact Resistance, RC) 29 2.7.6 電容I-V特性量測 31 2.7.7 C-V電特性量測 31 2.7.8 半導體參數分析儀 (Semiconductor Parameter Analyzer) 31 2.8 濺鍍(Sputter)機台基板加熱溫度校正 31 2.9 HfO2薄膜之材料特性分析 35 2.9.1 場發射掃描式電子顯微鏡 (FE-SEM) 35 2.9.2 表面輪廓測厚儀 (α-step) 35 2.9.3 原子力顯微鏡 (AFM) 36 Chapter 3 以不同製程通氧比例之氧化鉿(HfO2)當作閘極絕緣層之金屬氧化物薄膜電晶體電特性及材料分析之研究 37 3.1 實驗說明 37 3.2 元件製作 37 3.3 結果與討論 43 3.3.1 不同通氧比例之HfO2薄膜鍍率(Deposition Rate)量測 43 3.3.2 HfO2薄膜利用RF濺鍍機台之製程均勻度(Uniformity) 46 3.3.3 不同製程通氧比例之HfO2薄膜表面粗糙度(Roughness) 48 3.3.4 在不同通氧比例下製程之HfO2電容-電壓特性(C-V) 52 3.3.5 在不同通氧比例下製程之HfO2漏電流特性(I-V) 56 3.3.6 在不同通氧比例下製作HfO2閘極絕緣層之TFT元件電特性 58 3.4 結論 71 Chapter 4 氧化鉿(HfO2)當作閘極絕緣層之小尺寸金屬氧化物薄膜電晶體製作及電特性之研究 72 4.1 實驗說明 72 4.2 元件製作 72 4.2.1 以微影製程圖案化IGZO-TFT小尺寸元件 73 4.2.2 IGZO-TFT小尺寸元件結構說明 74 4.3 結果與討論 79 4.3.1 以通氧比例33%製作HfO2閘極絕緣層之元件電特性分析 79 4.3.2 以通氧比例33%製作HfO2閘極絕緣層之元件接觸電阻(Rc)分析 85 4.3.3 以通氧比例33%製作HfO2閘極絕緣層之元件磁滯(Hysteresis)效應 86 4.3.4 以通氧量33%製作HfO2閘極絕緣層之元件在閘極偏壓劣化可靠度之研究 91 4.3.5 以通氧比例33%製作HfO2閘極絕緣層之元件在閘極與汲極偏壓劣化可靠度之研究 102 4.3.6 量測元件之電性表現均勻性 112 4.4 結論 114 Chapter 5 結論與未來展望 116 參考文獻 118

[1] J. F. Wager, "ZnO Transparent Thin-Film Transistor Device Physics," Science, vol. 300, no. 5623, pp. 1245-1246, 2003.
[2] N. Munzenrieder, C. Zysset, T. Kinkeldei and G. Troster, "Design Rules for IGZO Logic Gates on Plastic Foil Enabling Operation at Bending Radii of 3.5 mm," IEEE Transactions on Electron Devices, vol. 59, no. 8, pp. 2153-2159, 2012.
[3] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, no. 25, pp. 488-492, 2004.
[4] 王木俊 且 劉傳璽, 薄膜電晶體液晶顯示器原理與實務, 新文京開發出版股份有限公司, 2008.
[5] 陳金鑫 且 黃孝文, OLED 夢幻顯示器, 五南圖書出版社股份有限公司, 2007.
[6] B. Y. Tsui and H. W. Chang, "Formation of interfacial layer during reactive sputtering of hafnium oxide," Journal of Applied Physics, vol. 93, pp. 10119-10124, 2003.
[7] S. H. Lo, D. A. Buchanan, Y. Taur and W. Wang, "Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's," IEEE Electron Device Letters, vol. 18, no. 5, pp. 209-211, 1997.
[8] P. Zurcher, C. J. Tracy, R. E. Jones Jr, P. Alluri, P. Y. Chu, B. Jiang, M. Kim, B. M. Melnick, M. V. Raymond, D. Roberts, T. P. Remmel, T. L. Tsai, B. E. White, S. Zafar and S. J. Gillespie, "Barium Strontium Titanate Capacitors for Embedded Dram," Materials Research Society Symposium Proceedings, vol. 541, pp. 11-22, 1999.
[9] A. Grill, "Electrode structures for integration of ferroelectric or high dielectric constant films in semiconductor devices," Materials Research Society Symposium Proceedings, vol. 541, pp. 89-99, 1999.
[10] K. J. Hubbard and D. G. Schlom, "Thermodynamic stability of binary oxides in contact with silicon," Journal of Materials Research, vol. 11, no. 11, pp. 2757-2776, 1996.
[11] B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. C. Stork, Z. Yu, M. Zeitzoff and J. C. S. Woo, "The impact of High-k gate dielectrics and metal gate electrodes on Sub-100 nm MOSFETs," IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1537-1544, 1999.
[12] M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee and K. Fujihara, "Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition," Applied Physics Letters, vol. 81, no. 3, pp. 472-474, 2002.
[13] M. H. Cho, D. H. Ko, Y. G. Choi, K. Jeong, I. W. Lyo, D. Y. Noh, H. J. Kim and C. N. Whang, "Thickness dependence of Y2O3 films grown on an oxidized Si surface," Journal of Vacuum Science & Technology A, vol. 19, no. 1, pp. 200-206, 2001.
[14] B. H. Lee, Y. Jeon, K. Zawadzki, W. J. Qi and J. Lee, "Effects of interfacial layer growth on the electrical characteristics of thin titanium oxide films on silicon," Applied Physics Letters, vol. 74, no. 21, pp. 3143-3145, 1999.
[15] V. Mikhelashvili and G. Eisenstein, "Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation," Journal of Applied Physics, vol. 89, no. 6, pp. 3256-3269, 2001.
[16] J. Robertson, "Band offsets of wide-band-gap oxides and implications for future electronic devices," Journal of Vacuum Science & Technology B, vol. 18, no. 3, pp. 1785-1791, 2000.
[17] G. D. Wilk, R. M. Wallace and J. M. Anthony, "High-K gate dielectrics: Current status and materials properties considerations," Journal of Applied Physics, vol. 89, no. 10, pp. 5243-5275, 2001.
[18] D. C. Hsu, Y. K. Chang, M. T. Wang, P. C. Juan, Y. L. Wang and J. Y. M. Lee, "The positive bias temperature instability of nn-channel metal-oxide-semiconductor field-effect transistors with ZrO2 gate dielectric," Applied Physics Letters, vol. 92, p. 202901, 2008.
[19] B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi and J. C. Lee, "Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application," Technical Digest-International Electron Devices Meeting., vol. 1999, pp. 133-136, 1999.
[20] I. Barin, Thermochemical Data of Pure Substances, VCH, Weiheim, 1989.
[21] A. Convertino, A. Valentini, T. Ligonzo and R. Cingolani, "Organic–inorganic dielectric multilayer systems as high reflectivity distributed Bragg reflectors," Applied Physics Letters, vol. 71, p. 732, 1997.
[22] N. Miyata, M. Ichikawa, T. Nabatame, T. Horikawa and A. Toriumi, "Thermal stability of a thin HfO2/ultrathin SiO2/Si structure: Interfacial Si oxidation and silicidation," Japanese Jouranl of Applied Physics, vol. 42, pp. 138-140, 2003.
[23] K. J. Choi, W. C. Shin and S. G. Yoon, "Ultrathin HfO2 gate dielectric grown by plasma-enhanced chemical vapor deposition using Hf[OC(CH3)3]4 as a precursor in the absence of O2," Journal of Materials Research, vol. 18, no. 1, pp. 60-65, 2003.
[24] L. Pereira, A. Marques, H. Aguas, N. Nedev, S. Georgiev, E. Fortunato and R. Martins, "Performances of hafnium oxide produced by radio frequency sputtering for gate dielectric application," Materials Science and Engineering B, vol. 109, pp. 89-93, 2004.
[25] O. Renault, D. Samour, D. Rouchon, P. Holliger, A. M. Papon, D. Blin and S. Marthon, "Interface properties of ultra-thin HfO2 films grown by atomic layer deposition on SiO2/Si," Thin Solid Films, vol. 428, pp. 190-194, 2003.
[26] M. Orita, H. Ohta, M. Hirano, S. Narushima and H. Hosono, "Amorphous transparent conductive oxide InGaO3 (ZnO)m (m≤ 4): a Zn4s conductor," Philosophical Magazine Part B., vol. 81, no. 5, pp. 501-515, 2001.
[27] D. C. Paine, T. Whitson, D. Janiac, R. Beresford, C. Ow-Yang and B. Lewis, "A study of low temperature crystallization of amorphous thin film indium-tin-oxide," Journal of Applied Physics, vol. 85, no. 12, pp. 8445-8450, 1999.
[28] M. Yasukawa, H. Hosono, N. Ueda and H. Kawazoe, "Novel Transparent and Electroconductive Amorphous Semiconductor: amorphous AgSbO3 Film.," Journal of Applied Physics, vol. 34, no. 3A, pp. L281-L284, 1995.
[29] E. Arca, K. Fleischer and I. V. Shvets, "Magnesium, nitrogen codoped Cr2O3: A p-type transparent conducting oxide," Applied Physics Letters, vol. 99, no. 11, p. 111910, 2011.
[30] Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, "p-channel thin-film transistor using p-type oxide semiconductor, SnO," Applied Physics Letters, vol. 93, no. 3, p. 032113, 2008.
[31] H. Hiramatsu, K. Ueda, H. Ohta, M. Hirano, T. Kamiya and H. Hosono, "Degenerate p-type conductivity in wide-gap LaCuOS1−xSex (x=0–1) epitaxial film," Applied Physics Letters, vol. 82, no. 7, p. 1048, 2003.
[32] A. J. Bosman and C. Crevecoeur, "Mechanism of the Electrical Conduction in Li-Doped NiO," Physical Review, vol. 144, no. 2, pp. 763-770, 1966.
[33] M. L. Tu, Y. K. Su and C. Y. Ma, "Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering," Journal of Applied Physics, vol. 100, no. 5, p. 053705, 2006.
[34] D. C. Look, G. M. Renlund, R. H. Burgener II and J. R. Sizelove, "As-doped p-type ZnO produced by an evaporation/sputtering process," Applied Physics Letters, vol. 85, no. 22, pp. 5269-5271, 2004.
[35] Y. Ohya, H. Saiki and Y. Takahashi, "Preparation of transparent, electrically conducting ZnO film from zinc acetate and alkoxide," Journal of Materials Science, vol. 29, no. 15, pp. 4099-4103, 1994.
[36] R. L. Huffman, "Zno-channel thin-film transistors: Channel mobility," Journal of Applied Physics, vol. 95, no. 10, pp. 5813-5819, 2004.
[37] H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," Journal of Non-Crystalline Solids, vol. 352, pp. 851-858, 2006.
[38] H. Hosono, K. Nomura, Y. Ogo, T. Uruga and T. Kamiya, "Factors controlling electron transport properties in transparent amorphous oxide semiconductors," Journal of Non-Crystalline Solids, vol. 354, pp. 2796-2800, 2008.
[39] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong and D. A. Keszler, "High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer," Applied Physics Letters, vol. 86, no. 1, p. 013503, 2005.
[40] M. Orita, H. Ohta, M. Hirano, S. Narushima and H. Hosono, "Amorphous transparent conductive oxide InGaO3(ZnO)m (m ≤ 4): A Zn 4s conductor," Philosophical Magazine B, vol. 81, no. 5, pp. 501-515, 2001.
[41] H. Hosono, M. Yasukawa and H. Kawazoe, "Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides," Journal of Non-Crystalline Solids, vol. 203, pp. 334-344, 1996.
[42] K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi and S. Kaneko, "Comparison of ultraviolet photo-field effects between hydrogenated amorphous silicon and amorphous InGaZnO4 thin-film transistors," Japanese Journal of Applied Physics, vol. 48, no. 1, p. 010203, 2009.
[43] 戴亞翔, TFT-LCD 面板的驅動與設計, 五南圖書出版社股份有限公司, 2008.
[44] J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim and C. J. Kim, "Control of threshold voltage in ZnO-based oxide thin film transistors," Applied Physics Letters, vol. 93, no. 3, p. 033513, 2008.
[45] P. Barquinha, L. Pereira, G. Gonalves, R. Martins and E. Fortunato, "The effect of deposition conditions and annealing on the performance of high-mobility GIZO TFTs," Electrochemical and Solid-State Letters, vol. 11, no. 9, pp. H248-H251, 2008.
[46] J. H. Jeong, H. W. Yang, J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, J. Song and C. S. Hwang, "Origin of subthreshold swing improvement in amorphous indium gallium zinc oxide transistors," Electrochemical and Solid-State Letters, vol. 11, no. 6, pp. H157-H159, 2008.
[47] K. Ide, Y. Kikuchi, K. Nomura, M. Kimura, T. Kamiya and H. Hosono, "Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors," Applied Physics Letters, vol. 99, no. 9, p. 093507, 2011.
[48] S. Y. Huang, T. C. Chang, M. C. Chen, S. W. Tsao, S. C. Chen, C. T. Tsai and H. P. Lo, "Device characteristics of amorphous indium gallium zinc oxide thin film transistors with ammonia incorporation," Solid-State Electronics, vol. 61, no. 1, pp. 96-99, 2011.
[49] Y. K. Moon, S. Lee, W. S. Kim, B. W. Kang, C. O. Jeong, D. H. Lee and J. W. Park, "Improvement in the bias stability of amorphous indium gallium zinc oxide thin-film transistors using an O2 plasma-treated insulator," Applied Physics Letters, vol. 95, p. 013507, 2009.
[50] P. Barquinha, A. M. Vila, G. Goncalves, L. Pereira, R. Martins, J. R. Morante and E. Fortunato, "Gallium-indium-zinc-oxide-based thin-film transistors: Influence of the source/drain material," IEEE Transactions on Electron Devices, vol. 55, no. 4, pp. 954-960, 2008.
[51] J. R. Yim, S. Y. Jung, H. W. Yeon, J. Y. Kwon, Y. J. Lee, J. H. Lee and Y. C. Joo, "Effects of metal electrode on the electrical performance of amorphous In-Ga-Zn-O thin film transistor," Japanese Journal of Applied Physics, vol. 51, no. 1, p. 011401, 2011.
[52] E. N. Cho, J. H. Kang and I. Yun, "Contact resistance dependent scaling-down behavior of amorphous InGaZnO thin-film transistors," Current Applied Physics, vol. 11, no. 4, pp. 1015-1019, 2011.
[53] H. Kim, K. K. Kim, S. N. Lee, J. H. Ryon and R. D. Dupuis, "Low resistance Ti/Au contacts to amorphous gallium indium zinc oxides," Applied Physics Letters, vol. 98, no. 11, p. 112107, 2011.
[54] J. R. Yim, S. Y. Jung, H. W. Yeon, J. Y. Kwon, Y. J. Lee, J. H. Lee and Y. C. Joo, "Erratum: Effects of metal electrode on the electrical performance of amorphous In-Ga-Zn-O thin film transistor," Japanese Journal of Applied Physics, vol. 51, no. 2 PART 1, p. 029201, 2012.
[55] J. M. Lee, K. K. Kim, S. J. Park and W. K. Choi, "Low-resistance and nonalloyed ohmic contacts to plasma treated ZnO," Applied Physics Letters, vol. 78, no. 24, pp. 3842-3844, 2001.
[56] J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim and S. I. Kim, "Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment," Applied Physics Letters, vol. 90, no. 26, p. 262106, 2007.
[57] R. Chen, W. Zhou, M. Zhang, M. Wong and H. S. Kwok, "Self-aligned indium-gallium-zinc oxide thin-film transistor with phosphorus-doped source/drain regions," IEEE Electron Device Letters, vol. 33, no. 8, pp. 1150-1152, 2012.
[58] Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, "Specific contact resistances between amorphous oxide semiconductor In-Ga-Zn-O and metallic electrodes," Thin Solid Films, vol. 516, no. 17, pp. 5899-5902, 2008.
[59] W. S. Kim, Y. K. Moon, K. T. Kim, J. H. Lee, B. D. Ahn and J. W. Park, "An investigation of contact resistance between metal electrodes and amorphous gallium–indium–zinc oxide (a-GIZO) thin-film transistors," Thin Solid Films, vol. 518, no. 22, pp. 6357-6360, 2010.
[60] H. Hu, C. Zhu, Y. F. Lu, Y. H. Wu, T. Liew, M. F. Li, B. J. Cho, W. K. Choi and N. Yakovlev, "Physical and electrical characterization of HfO 2 metal–insulator–metal capacitors for Si analog circuit applications," Journal of Applied Physics, vol. 94, no. 1, pp. 551-557, 2003.
[61] Z. He, W. Wu, H. Xu, J. Zhang and Y. Tang, "Influence of O2/Ar Ratio on Microstructures and Properties of Hafnium Dioxide Films," Chinese Journal of Vacuum Science and Technology, vol. 26, no. 2, pp. 159-162, 2006.
[62] Y. Yang and W. Tang, "Effect of O2 Flux on the Growth Process of HfO2 Thin Films Deposited by Reactive Sputtering," Advances in Condensed Matter Physics, vol. 2, pp. 12-16, 2013.
[63] W. T. Liu, Z. T. Liu, F. Yan, H. Tian and Q. J. Liu, "Influence of Oxygen Atmosphere on Electrical Properties of Magnetron Sputtered HfO2 Thin Films," Bulletin of The Chinese Ceramic Society, vol. 29, no. 5, 2010.
[64] I. K. Lee, S. W. Lee, J. G. Gu, K. S. Kim and W. J. Cho, "Comparative Study of Device Performance and Reliability in Amorphous InGaZnO Thin-Film Transistors with Various High-k Gate Dielectrice," Japanese Journal of Applied Physics, vol. 52, pp. 06GE05-1-06GE05-4, 2013.
[65] Y. H. Lin and J. C. Chou, "Temperature Effects on a-IGZO Thin Film Transistors Using HfO2 Gate Dielectric Material," Journal of Nanomaterials, vol. 2014, p. 347858, 2014.
[66] E. N. Cho, J. H. Kang and I. Yun, "Contact resistance dependent scaling-down behavior of amorphous InGaZnO thin-film transistors," Current Applied Physics, vol. 11, pp. 1015-1019, 2011.
[67] K. Y. Chan, E. Bunte, H. Stiebig and D. Knipp, "Influence of contact effect on the performance of microcrystalline silicon thin-film transistors," Applied Physics Letters, vol. 89, p. 203509, 2006.
[68] A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano and H. Hosono, "Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor," Applied Physics Letters, vol. 94, p. 133502, 2009.
[69] H. H. Hsu, C. Y. Chang, C. H. Cheng, P. C. Chen, Y. C. Chiu, P. Chiou and C. P. Cheng, " High Mobility Field-Effect Thin Film Transistor Using Room-Temperature High-k Gate Dielectrics," Journal of Display Technology, vol. 10, no. 10, pp. 875-881, 2014.
[70] Y. S. Chun, S. Chang and S. Y. Lee, "Effects of gate insulators on the performance of a-IGZO TFT fabricated," Microelectronic Engineering, vol. 88, no. 7, pp. 1590-1593, 2011.
[71] S. Y. Lee, S. Chang and J. S. Lee, "Role of high-k gate insulators for oxide thin film transistors," Thin Solid Films, vol. 518, no. 11, pp. 3030-3032, 2010.
[72] J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo and H. D. Kim, "Origin of threshold voltage instability in indium-gallium-zinc oxide thin film," Applied Physics Letters, vol. 93, p. 123508, 2008.
[73] J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo and H. D. Kim, "Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor," Applied Physics Letters, vol. 92, p. 072104, 2008.
[74] S. W. Lee, P. J. Jeon, K. Choi, S. W. Min, H. Kwon and S. Im, "Analysis of Self-Heating Effect on Short Channel Amorphous InGaZnO Thin-Film Transistors," IEEE Electron Device Letters, vol. 36, no. 5, pp. 472-474, 2015.
[75] H. J. Jang, S. M. Lee and J. T. Park, "Device Degradation Under High Gate and Drain Bias Stress in IGZO Transistors," Lecture Notes in Electrical Engineering, vol. 235, pp. 401-408, 2013.
[76] S. Y. Huang, T. C. Chang, L. W. Lin, M. C. Yang, M. C. Chen, J. C. Jhu and F. Y. Jian, "The asymmetrical degradation behavior on drain bias stress under illumination for InGaZnO thin film transistors," Applied Physics Letters, vol. 100, p. 222901, 2012.
[77] M. Mativenga, M. Seok and J. Jang, "Gate bias-stress induced hump-effect in transfer characteristics of amorphous-indium-galium-zinc-oxide thin-fim transistors with various channel widths," Applied Physics Letters, vol. 99, p. 122107, 2011.
[78] I. K. Lee, S. W. Lee, J. G. Gu, K. S. Kim and W. J. Cho, "Comparative Study of Device Performance and Reliability in Amorphous InGaZnO Thin-Film Transistors with Various High-k Gate Dielectrics," Japanese Journal of Applied Physics, vol. 52, p. 06GE05, 2013.
[79] L. Yuan, X. Zou, G. Fang, J. Wan, H. Zhou and X. Zhao, "High-Performance Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors With HfOxNy/HfO2/HfOxNy Tristack Gate Dielectrics," IEEE Electron Device Letters, vol. 32, no. 1, pp. 42-44, 2011.
[80] J. C. Park, I. T. Cho, E. S. Cho, D. H. Kim, C. Y. Jeong and H. I. Kwon, "Comparative Study of ZrO2 and HfO2 as a High-k Dielectric for Amorphous InGaZnO Thin Film Transistors," Journal of Nanoelectronics and Optoelectronics, vol. 9, pp. 67-70, 2014.
[81] Y. Shao, X. Xiao, X. He, W. Deng and S. Zhang, "Low-Voltage a-InGaZnO Thin-Film Transistors With Anodized Thin HfO2 Gate Dielectric," IEEE Electron Device Letters, vol. 36, no. 6, pp. 573-575, 2015.

QR CODE