簡易檢索 / 詳目顯示

研究生: 蕭至維
Chih-Wei Hsiao
論文名稱: 噴霧乾燥法製備生物活性玻璃粉末及其結構觀察之研究
Synthesis and characterization of spray dried bioactive glass
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 施劭儒
Shao-Ju Shih
王丞浩
Chen-Hao Wang
顏怡文
Yee-Wen Yen
林穎志
Ying-Chih Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 95
中文關鍵詞: 生物活性玻璃氫氧基磷灰石噴霧乾燥法量產生物活性
外文關鍵詞: bioactive glass, hydroxyapatite, spray drying, mass production, bioactivity
相關次數: 點閱:404下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著社會的老年化以及人們對於健康要求提高,生物活性玻璃(bioactive glass, BG)材料受到關注,BG在人體的體液中可以形成氫氧基磷灰石(hydroxyapatite, HA),骨母細胞能夠將HA進行改質形成人體的骨頭,幫助骨頭修復。傳統玻璃製程和溶膠-凝膠法被廣泛應用在合成生物活性玻璃多年,然而這兩種方法各有其優缺點。首先,傳統玻璃製程需要相對高的製備溫度(1250-1400oC),而且對於生物活性玻璃的純度有疑慮,因為需要進行研磨和過篩的階段過程中,可能會影響純度。再來是溶膠-凝膠法可以提供較低溫的製備溫度(600-700oC),而且可以藉由合成手法來控制粉體成分以及微結構,進而影響粉體的生物活性,然而此方法卻需要花費長時間(數天)合成BG粉體,而且也較難將BG粉體進行量產。因此,本研究利用噴霧乾燥法(spray drying method, SD)來克服上述的缺點,SD法能夠短時間合成出高純度的BG粉體和具有量產化的特性(i.e. 250g/15min)。SD法合成BG粉體的研究報導少,所以將進行合成常見的58S、68S和76S BGs粉體,並且進行討論以SD法合成的粉體形貌的觀察以及生物活性的評估。

利用X光繞射技術(XRD)分析BG粉體的相結構,並利用掃描電子顯微技術(SEM)觀察BG粉體的表面結構,並做體外的生物活性實驗,將BG粉體浸泡於模擬人體體液(simulated body fluid)12小時,利用XRD分析HA的相結構以及SEM觀察HA在BG表面的生成。經由實驗結果進行討論,調控前驅物溶液的pH值以及濃度,可以控制粉體的形貌,具有圓球形的(sphere)及皺褶的(crumpling)兩種形貌。比較BG成分,58S BG具有較佳的生物活性(HA生成量),依序為68S 和76S BGs。


Bioactive glasses (BGs) have received lots of attention from biologists and engineers because of their potential applications in bone implants. BGs will form hydroxyapatite (HA) structure in body fluid to help bone recovered. The conventional glass process and sol–gel process are popular methods for fabricating BGs, and have been used to produce BGs for years. However, they have some disadvantages of producing BGs. Firstly, the conventional glass process requires comparatively high formation temperature (1,250–1,400oC) and has difficulty fabricating high purity glasses for bioactive control due to grinding and sieving procedures. Secondly, although the sol-gel process offers a lower heat treatment (600–700oC) and provides a broader range and greater control of bioactivity because it can alter the BG composition or microstructure by manipulating processing parameters, it has a problem to have mass production. Therefore, this study presented a spray drying (SD) method to overcome the disadvantages of purity and mass production (i.e. 250g/15min). The common 58S, 68S and 76S bioactive glasses are synthesized by SD method, and measured their powder morphologies and observed thier bioactivities.

The XRD technique analyzed the phase structures, and scanning electron microscopy measured the surface morphologies of the BG powders. In addition, in vitro bioactive tests showed the formation of HA layers on BG particles after immersion in simulated body fluid for 12h. Experimental results show the promising potential of SD method to fabricate BG particles and to control the spherical and crumpling morphologies of BG particles. From the results, 58S BG has the best bioactivity, and the second and the last are 68S and 76S BGs, respectively.

摘要 I Abstract II 致謝 III 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1 生醫材料 4 2.1.1生醫金屬 5 2.1.2生醫高分子 5 2.1.3 生醫陶瓷 5 2.2 生物活性玻璃 8 2.2.1 生物活性玻璃的材料特性 9 2.2.2 生物活性的機制以及BG組成的影響 10 2.2.3 生物活性的分析 12 2.3 生物活性玻璃合成方式 16 2.3.1 傳統玻璃法 16 2.3.2 溶膠-凝膠法 18 2.3.3 噴霧熱裂解法 22 2.3.4 噴霧乾燥法 26 2.4 噴霧乾燥法 28 2.4.1 噴霧乾燥法之簡介 28 2.4.2 前驅物溶液之配製 29 2.4.3 噴霧乾燥粉體的形貌之影響分子 36 2.4.4 旋風集塵技術 41 2.5 研究目的與重要性 43 第三章 實驗目的與方法 44 3.1 實驗設計 44 3.2 實驗原料 46 3.3實驗儀器設備 47 3.4 樣品製備之步驟 48 3.5 樣品性質及分析方法 50 3.5.1 X光繞射儀 50 3.5.2 場發射掃描式電子顯微鏡 51 3.6 生物相容性 52 3.7 體外生物活性評估 53 第四章 結果 54 4.1 58S BG粉體之合成及分析 54 4.1.1 前驅物粉體熱處理及酸洗處理 54 4.1.2 前驅物溶液的pH值對粉體之影響 57 4.1.3 前驅物濃度對於顆粒尺寸之影響 63 4.1.4 生物毒性測試 67 4.2 58S、68S和78S BG粉體之合成及分析 69 4.2.1 58S、68S和76S BG之相分析 69 4.2.2 微結構形貌以及粒徑分布 70 4.2.3 BG粉體於SBF的pH值變化 73 4.2.4 生物活性測試 75 第五章 討論 77 5.1 顆粒形貌 77 5.1.1 前驅物溶液的pH值對於BG粉體形貌之影響 78 5.1.2 前驅物溶液的濃度對於BG粉體形貌之影響 80 5.2 生物活性 82 5.2.1 生物活性玻璃與pH值 82 5.2.2 生物活性玻璃與生物活性 83 5.2.3 生物活性與pH值 84 第六章 結論 86 第七章 未來工作 87 參考文獻 88

[1] T. McNamara, B. Friedman, I. Kleinberg, The microbial composition of human incisor tooth plaque, Archives of oral biology, 24 (1979) 91-95.
[2] R.C. Page, K.S. Kornman, The pathogenesis of human periodontitis: an introduction, Periodontology 2000, 14 (1997) 9-11.
[3] J.A. Kanis, L.J. Melton, C. Christiansen, C.C. Johnston, N. Khaltaev, The diagnosis of osteoporosis, Journal of bone and mineral research, 9 (1994) 1137-1141.
[4] https://finance.technews.tw/2017/03/16/dentistry-medical-materials-market/.
[5] http://www.msdental.com.au/our-services/gum-disease/.
[6] M.R. Urist, B.T. O'Connor, R.G. Burwell, Bone grafts, derivatives, and substitutes, Butterworth-Heinemann1994.
[7] D.F. Williams, On the mechanisms of biocompatibility, Biomaterials, 29 (2008) 2941-2953.
[8] T. Kokubo, H.-M. Kim, M. Kawashita, Novel bioactive materials with different mechanical properties, Biomaterials, 24 (2003) 2161-2175.
[9] C. Oldani, A. Dominguez, Titanium as a Biomaterial for Implants, Recent Advances in Arthroplasty, InTech2012.
[10] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials, 27 (2006) 1728-1734.
[11] Q. Chen, C. Zhu, G.A. Thouas, Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites, Progress in Biomaterials, 1 (2012) 2.
[12] M. Wadamoto, Y. Akagawa, Y. Sato, T. Kubo, The three-dimensional bone interface of an osseointegrated implant. I: A morphometric evaluation in initial healing, The Journal of prosthetic dentistry, 76 (1996) 170-175.
[13] I. Denry, J.R. Kelly, State of the art of zirconia for dental applications, Dental materials, 24 (2008) 299-307.
[14] W. Xia, J. Chang, Preparation, in vitro bioactivity and drug release property of well-ordered mesoporous 58S bioactive glass, Journal of Non-Crystalline Solids, 354 (2008) 1338-1341.
[15] W. Xia, J. Chang, Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system, Journal of Controlled Release, 110 (2006) 522-530.
[16] C. Shih, H. Chen, L. Huang, P. Lu, H. Chang, I. Chang, Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds, Materials Science and Engineering: C, 30 (2010) 657-663.
[17] B. Lei, X. Chen, Y. Wang, N. Zhao, G. Miao, Z. Li, C. Lin, Fabrication of porous bioactive glass particles by one step sintering, Materials Letters, 64 (2010) 2293-2295.
[18] A. Salinas, S. Shruti, G. Malavasi, L. Menabue, M. Vallet-Regi, Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glasses, Acta biomaterialia, 7 (2011) 3452-3458.
[19] Y. Shi, L. Wang, S. Liang, Q. Zhou, B. Zheng, A high Zr-containing Ti-based alloy with ultralow Young's modulus and ultrahigh strength and elastic admissible strain, Materials Science and Engineering: A, 674 (2016) 696-700.
[20] J.M. Iasella, H. Greenwell, R.L. Miller, M. Hill, C. Drisko, A.A. Bohra, J.P. Scheetz, Ridge preservation with freeze-dried bone allograft and a collagen membrane compared to extraction alone for implant site development: a clinical and histologic study in humans, Journal of periodontology, 74 (2003) 990-999.
[21] E. Jorge-Herrero, P. Fernandez, J. Turnay, N. Olmo, P. Calero, R. Garcı́a, I. Freile, J. Castillo-Olivares, Influence of different chemical cross-linking treatments on the properties of bovine pericardium and collagen, Biomaterials, 20 (1999) 539-545.
[22] https://3d4medical.com/.
[23]http://www.hcshb.gov.tw/home.jsp?mserno=200802220002&serno=200802220015&menudata=HcshbMenu&contlink=hcshb/ap/news_view.jsp&dataserno=201606290007.
[24] A.B. Jedlicka, A.G. Clare, Chemical durability of commercial silicate glasses. I. Material characterization, Journal of non-crystalline solids, 281 (2001) 6-24.
[25] M. O’donnell, P. Candarlioglu, C. Miller, E. Gentleman, M. Stevens, Materials characterisation and cytotoxic assessment of strontium-substituted bioactive glasses for bone regeneration, Journal of Materials Chemistry, 20 (2010) 8934-8941.
[26] S. Lopez-Esteban, E. Saiz, S. Fujino, T. Oku, K. Suganuma, A.P. Tomsia, Bioactive glass coatings for orthopedic metallic implants, Journal of the European Ceramic Society, 23 (2003) 2921-2930.
[27] C.C. Lin, L.C. Huang, P. Shen, Na2CaSi2O6–P2O5 based bioactive glasses. Part 1: elasticity and structure, Journal of Non-Crystalline Solids, 351 (2005) 3195-3203.
[28] L.L. Hench, Bioceramics: from concept to clinic, Journal of the american ceramic society, 74 (1991) 1487-1510.
[29] A. Clark, C. Pantano, L. Hench, Auger spectroscopic analysis of bioglass corrosion films, Journal of the American Ceramic Society, 59 (1976) 37-39.
[30] M. O’donnell, S. Watts, R. Law, R. Hill, Effect of P2O5 content in two series of soda lime phosphosilicate glasses on structure and properties–Part I: NMR, Journal of Non-Crystalline Solids, 354 (2008) 3554-3560.
[31] B.J. Hong, S.J. Shih, Novel pore-forming agent to prepare of mesoporous bioactive glass using one-step spray pyrolysis, Ceramics International, 43 (2017) S771-S775.
[32] M.G. Ma, Hierarchically nanostructured hydroxyapatite: hydrothermal synthesis, morphology control, growth mechanism, and biological activity, International journal of nanomedicine, 7 (2012) 1781.
[33] S.J. Shih, W.L. Tzeng, Y.J. Chou, C.Y. Chen, Y.J. Chen, The influence of phase separation on bioactivity of spray pyrolyzed bioactive glass, Journal of nanoscience and nanotechnology, 15 (2015) 4688-4696.
[34] L.L. Hench, R.J. Splinter, W. Allen, T. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, Journal of Biomedical Materials Research Part A, 5 (1971) 117-141.
[35] W.D. Kingery, Introduction to ceramics, (1960).
[36] K. Rezwan, Q. Chen, J. Blaker, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials, 27 (2006) 3413-3431.
[37] Y. Hong, X. Chen, X. Jing, H. Fan, Z. Gu, X. Zhang, Fabrication and drug delivery of ultrathin mesoporous bioactive glass hollow fibers, Advanced Functional Materials, 20 (2010) 1503-1510.
[38] J.R. Jones, Reprint of: Review of bioactive glass: From Hench to hybrids, Acta biomaterialia, 23 (2015) S53-S82.
[39] S. Lin, C. Ionescu, K.J. Pike, M.E. Smith, J.R. Jones, Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass, Journal of Materials Chemistry, 19 (2009) 1276-1282.
[40] L.L. Hench, J.K. West, The sol-gel process, Chemical reviews, 90 (1990) 33-72.
[41] S.J. Shih, Y.J. Chou, I.C. Chien, One-step synthesis of bioactive glass by spray pyrolysis, Journal of Nanoparticle Research, 14 (2012) 1299.
[42] S.J. Shih, L.Y.S. Chang, C.Y. Chen, K.B. Borisenko, D.J. Cockayne, Nanoscale yttrium distribution in yttrium-doped ceria powder, Journal of Nanoparticle Research, 11 (2009) 2145-2152.
[43] S.J. Shih, Y.Y. Wu, K.B. Borisenko, Control of morphology and dopant distribution in yttrium-doped ceria nanoparticles, Journal of Nanoparticle Research, 13 (2011) 7021-7028.
[44] C.N. Cheng, R.T. Liou, J.M. Song, S.J. Shih, High-power current and fatigue sustainable circuits prepared using low-temperature spray pyrolyzed submicron silver particles, RSC Advances, 7 (2017) 40940-40945.
[45] Y.J. Chou, S.H. Lin, C.J. Shih, S.L. Chang, S.J. Shih, The effect of Ag dopants on the bioactivity and antibacterial properties of one-step synthesized Ag-containing mesoporous bioactive glasses, Journal of Nanoscience and Nanotechnology, 16 (2016) 10001-10007.
[46] S.J. Shih, B.J. Hong, Y.C. Lin, Novel graphene oxide-containing antibacterial mesoporous bioactive glass, Ceramics International, (2017).
[47] D. Perednis, L.J. Gauckler, Thin film deposition using spray pyrolysis, Journal of electroceramics, 14 (2005) 103-111.
[48] S.J. Shih, Y.J. Chou, C.Y. Chen, C.K. Lin, One-step synthesis and characterization of nanosized bioactive glass, J. Med. Biol. Eng, 34 (2014) 18-23.
[49] Y.J. Chou, B.J. Hong, Y.C. Lin, C.Y. Wang, S.J. Shih, The Correlation of Pore Size and Bioactivity of Spray-Pyrolyzed Mesoporous Bioactive Glasses, Materials, 10 (2017) 488.
[50] A. Marotta, A. Buri, G. Valenti, Crystallization kinetics of gehlenite glass, Journal of Materials Science, 13 (1978) 2483-2486.
[51] H.I. Hsiang, S.W. Yung, C.C. Wang, Effects of the addition of alumina on the crystallization, densification and dielectric properties of CaO–MgO–Al2O3–SiO2 glass in the presence of ZrO2, Ceramics International, 40 (2014) 15807-15813.
[52] M. Sales, J. Alarcon, Crystallization of sol-gel derived glass ceramic powders in the CaO-MgO-Al2O3-SiO2 system, Journal of materials science, 30 (1995) 2341-2347.
[53] M. Doval, M. Palou, S. Mojumdar, Hydration behavior of C2S and C2AS nanomaterials, synthetized by sol–gel method, Journal of thermal analysis and calorimetry, 86 (2006) 595-599.
[54] R. Li, A. Clark, L. Hench, An investigation of bioactive glass powders by sol‐gel processing, Journal of Applied Biomaterials, 2 (1991) 231-239.
[55] R. Vehring, Pharmaceutical particle engineering via spray drying, Pharmaceutical research, 25 (2008) 999-1022.
[56] A. Sosnik, K.P. Seremeta, Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers, Advances in colloid and interface science, 223 (2015) 40-54.
[57] M. Julien, S. Khoshniat, A. Lacreusette, M. Gatius, A. Bozec, E.F. Wagner, Y. Wittrant, M. Masson, P. Weiss, L. Beck, Phosphate‐Dependent Regulation of MGP in Osteoblasts: Role of ERK1/2 and Fra‐1, Journal of Bone and Mineral Research, 24 (2009) 1856-1868.
[58] S. Padilla, J. Roman, A. Carenas, M. Vallet-Regı, The influence of the phosphorus content on the bioactivity of sol–gel glass ceramics, Biomaterials, 26 (2005) 475-483.
[59] J. Damen, J. Ten Cate, Silica-induced precipitation of calcium phosphate in the presence of inhibitors of hydroxyapatite formation, Journal of dental Research, 71 (1992) 453-457.
[60] R. Jugdaohsingh, K.L. Tucker, N. Qiao, L.A. Cupples, D.P. Kiel, J.J. Powell, Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort, Journal of Bone and Mineral Research, 19 (2004) 297-307.
[61] S. Maeno, Y. Niki, H. Matsumoto, H. Morioka, T. Yatabe, A. Funayama, Y. Toyama, T. Taguchi, J. Tanaka, The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture, Biomaterials, 26 (2005) 4847-4855.
[62] P.J. Marie, The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis, Bone, 46 (2010) 571-576.
[63] K. Wallace, R. Hill, J. Pembroke, C. Brown, P. Hatton, Influence of sodium oxide content on bioactive glass properties, Journal of Materials Science: Materials in Medicine, 10 (1999) 697-701.
[64] S.J. Shih, C.Y. Chen, Y.C. Lin, J.C. Lee, R.J. Chung, Investigation of bioactive and antibacterial effects of graphene oxide-doped bioactive glass, Advanced Powder Technology, 27 (2016) 1013-1020.
[65] A.M. Elnahrawy, A.I. Ali, Influence of reaction conditions on sol-gel process producing SiO2 and SiO2-P2O5 gel and glass, New Journal of Glass and Ceramics, 4 (2014) 42.
[66] K. Do Kim, H.T. Kim, Formation of silica nanoparticles by hydrolysis of TEOS using a mixed semi-batch/batch method, Journal of sol-gel science and technology, 25 (2002) 183-189.
[67] C. Shao, H. Kim, J. Gong, D. Lee, A novel method for making silica nanofibres by using electrospun fibres of polyvinylalcohol/silica composite as precursor, Nanotechnology, 13 (2002) 635.
[68] A. Boonstra, J. Baken, Relation between the acidity and reactivity of a teos, ethanol and water mixture, Journal of Non-Crystalline Solids, 122 (1990) 171-182.
[69] E. Lintingre, F. Lequeux, L. Talini, N. Tsapis, Control of particle morphology in the spray drying of colloidal suspensions, Soft matter, 12 (2016) 7435-7444.
[70] F. Iskandar, L. Gradon, K. Okuyama, Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol, Journal of Colloid and Interface Science, 265 (2003) 296-303.
[71] S. Lyonnard, J.R. Bartlett, E. Sizgek, K.S. Finnie, T. Zemb, J.L. Woolfrey, Role of interparticle potential in controlling the morphology of spray-dried powders from aqueous nanoparticle sols, Langmuir, 18 (2002) 10386-10397.
[72] S.F.S. Shirazi, S. Gharehkhani, M. Mehrali, H. Yarmand, H.S.C. Metselaar, N.A. Kadri, N.A.A. Osman, A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing, Science and technology of advanced materials, 16 (2015) 033502.
[73] http://iee.nsysu.edu.tw/ezfiles/94/1094/img/956/a1.pdf.
[74] C. Kittel, Introduction to solid state physics, Wiley2005.
[75] H.P. Klug, L.E. Alexander, X-ray diffraction procedures, Wiley New York1954.
[76] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic A‐W3, Journal of Biomedical Materials Research Part A, 24 (1990) 721-734.
[77] W. Phadungsukanan, S. Shekar, R. Shirley, M. Sander, R.H. West, M. Kraft, First-principles thermochemistry for silicon species in the decomposition of tetraethoxysilane, The Journal of Physical Chemistry A, 113 (2009) 9041-9049.
[78] R. Hill, An alternative view of the degradation of bioglass, Journal of Materials Science Letters, 15 (1996) 1122-1125.

QR CODE