簡易檢索 / 詳目顯示

研究生: 何瑞娜
Ratna - Herly Safitri
論文名稱: 混合型共同安定劑(CA/n-Alkane)對苯乙烯迷你乳液之奧斯瓦老化效應的影響
Effects of Mixed Costabilizers on the Ostwald Ripening of Styrene Miniemulsion : CA/n-alkanes
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 林析右
Shi-Yow Lin
許榮木
Jung-Mu Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 136
中文關鍵詞: 迷你乳液奧士瓦老化速率混合型共同安定劑十六醇正烷烴
外文關鍵詞: Miniemulsions, Ostwald Ripening, Mixed Costabilizers, CA, n-Alkanes
相關次數: 點閱:214下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

組成單體苯乙烯(ST)的各種細乳液聚合系統Ostwald熟化率,要么十六烷基Alchohol(CA),正構烷烴,或混合的CA穩定與正構烷烴(癸烷,十二烷,十六烷從costabilizer濃度的影響lilik的數據,正十八烷,二十四烷)進行了調查。 ST中水利用表面活性劑(SDS),要么CA,正構烷烴或CA / N混合烷烴比均質使用sonicator分散的miniemulsions。 0.005-0.05範圍和ST段/範圍在0.005-0.02範圍(2)正構烷烴在costabilizer體積分數(2)確定的ST / CA的細乳液體系。結果表明,細乳液液滴直徑增加costabilizer濃度下降。
Ostwald熟化率的數據,只能跟著Kabalnov低costabilizer體積分數方程。在更高的costabilizer體積分數,他們偏離作為的costabilizer體積分數增加顯著。
對於miniemulsions穩定使用混合costabilizer(CA和正構烷烴)在costabilizer體積分數決定在0.005-0.02的範圍與組成的CA:正構烷烴= 0時01分; 0.2:0.8; 0.35:0.65; 0.5: 0,5; 0.65:0.35; 0.8:0.2; 1:0。平均液滴大小隨時間在每一個組成。發現隨著CA摩爾比正構烷烴的K1值的下降。 Ostwald熟化抑制正構烷烴的有效性降低,增加CA摩爾比在miniemulsions系統,反之亦然。然而,正構烷烴仍是延緩混合costabilizer細乳液體系中的Ostwald熟化率比CA的優勢。
CA和正構烷烴混合costabilizers延緩作用Ostwald熟化發生在三個組件分散相苯乙烯單體細乳液進行了調查。所有的結果,是自我與另一個理由提出偽兩個組件分散相細乳液聚合模型的有效性一致。獲得從改性Kabalnov方程的預測嚴重偏離Ostwald熟化率的三分量數據分散與CA /烷烴= 0.5/0.5階段的ST miniemulsions。
混合的CA costabilizer的長鏈正構烷烴(十八烷和四烷)接近線性方程組線性方程組的非比的數據表明協同效應。它與組合的CA costabilizer的競爭與短鏈正構烷烴,它導致沒有協同效應。這意味著的單costabilizer給最好的工作,以延緩短鏈正構烷烴(癸和十二烷)Ostwald熟化比的CA combinantion率。而在中間,結合CA十六烷平均值,非線性方程和線性方程同樣的差異。


The effect of costabilizer concentration on the Ostwald ripening rate of various miniemulsion systems comprising styrene (ST) as monomers, and stabilized by either Cetyl Alchohol (CA), n-alkanes, or mixed CA with n-alkanes (Decane, Dodecane, Hexadecane from lilik’s data, Octadecane, and Tetracosane) was investigated. The miniemulsions were prepared by dispersing ST in water using surfactant (SDS) and either CA , n-alkanes or mixed CA/n-alkanes than homogenize using sonicator. For ST/CA miniemulsion system determined at costabilizer volume fraction (2) in the range of 0.005-0.05 and for ST/n-alkanes in the range (2) in the range of 0.005-0.02. The results showed that miniemulsion droplets decrease in diameter with increasing costabilizer concentration.
The Ostwald ripening rate data only follow Kabalnov’s equation at low costabilizer volume fractions. At higher costabilizer volume fractions, they deviated significantly as the costabilizer volume fraction was increased.
For miniemulsions stabilized using mixed costabilizer (CA and n-alkanes) were determined at the costabilizer volume fraction in the range of 0.005-0.02 with the composition CA: n-alkanes= 0:1; 0.2:0.8; 0.35:0.65; 0.5:0,5; 0.65:0.35; 0.8:0.2; 1:0. The average droplet size increases with time in every composition. The K1 value is found decrease with increasing the molar ratio of CA to n-alkanes. The effectiveness of n-alkanes in suppressing Ostwald ripening decreases by increasing the molar ratio of CA in the miniemulsions system and vice versa. However, n-alkanes is still more dominant in retarding the ostwald ripening rate than CA in the mixed costabilizer miniemulsion system.
The role of the mixed costabilizers of CA and n-alkanes in retarding Ostwald ripening occurring in the three component disperse phase styrene monomer miniemulsion was investigated. All the results that are self consistent with one another justify the validity proposed pseudo two component dispersion phase miniemulsion model. The predictions obtained from the modified Kabalnov equation severely deviate from the Ostwald ripening rate data for the three-component disperse phase ST miniemulsions with CA/n-alkane = 0.5/0.5.
Mix costabilizer of CA with longer chain of n-alkanes (Octadecane and Tetracosane) give an synergetic effect showed from the data close to non linear equation than linear equation. It competes with mix costabilizer of CA with shorter chain of n-alkanes, it result no synergetic effect. It means the single costabilizer give the best work to retarding Ostwald ripening rate than combinantion of CA with shorter chain n-alkanes (Decane and Dodecane). While in the middle, combination of CA-Hexadecane give the average value, the same difference to non linear equation and linear equation.

Acknowledgement i Table of contents ii List of figures iv List of tables vi Abstract vii Chapter I Introduction I.1 Emulsion 1 I.2 Emulsion formation 2 1.3. Emulsion stability 3 I.4 Miniemulsion 4 I.5 About this Research 5 Chapter II Literature Survey II.1 Overview 7 II.2 Miniemulsion stability 8 II.3 Preparation of miniemulsion 10 II.3.1 Formulation 10 II.3.2 Method of preparation 13 II.3.3 Homogenization system 14 II.3.4 Monomer droplet size measurement 15 II.4 Ostwald Ripening Rate 16 II.5 Effect of mixed costabilizer in miniemulsion 30 Chapter III Experimental III.1 Chemicals 32 III.2 Equipments 32 III.2.1 Major equipment 32 III.2.2 Others Equipments used 33 III.2.3 Apparatus used 33 III.3 Experimental Procedure 33 III.3.1 Miniemulsion stabilized by cetyl alcohol 33 III.3.2 Miniemulsion with one costabilizer (n-alkanes) 34 III.3.3 Miniemulsion with two costabilizer (CA with n-alkanes) 35 III.3.4 Measurement of monomer droplet size or latex particle size 36 by Dynamic Light Scattering III.3.5 Formulation of dilution solution 36 III.4 Schematic Diagram of Experimental Procedure III.4.1 Preparation of miniemulsion with cetyl alcohol 38 III.4.2 Preparation of miniemulsion with single costabilizer 39 (n-alkanes) III.4.3 Miniemulsion with two costabilizer (CA and n-alkanes) 40 III.5 Experimental Set-up 41 Chapter IV Results and Discussion IV.1 Miniemulsion Stability 47 IV.1.1 Monomer Droplet Degradation upon Aging 47 IV.1.1.1 Alcohol costabilizer 48 a.Cetyl alcohol costabilizer 48 IV.1.1.2 n-Alkanes costabilizer 50 IV.1.2 Effect of Monomer Composition on Ostwald Ripening Rate 52 IV.1.3 Modelling of the Experimental Data 56 IV.2 Miniemulsion system with mixed two costabilizers 58 IV.2.1 Effect of mixed costabilizer on Ostwald ripening 62 Chapter V Conclusion 85 References 87 Appendix Raw Data

REFERENCES
1. Jiao, J., Burgess, D.J. J.of Colloid and Interface Sci. 264 (2003) 509-516.
2. Capek , I. Advance in Colloid and Interface Sci. 107 (2004) 125-155.
3. Eamon, Mc Evoy. The Development and Application of Oil-In-Water Microemulsion Liquid Electrokinetic Chromatography for Pharmaceutical Analysis. Ireland.2008
4. NRT Science & Technology Comitte 1997.
5. Higuchi, W.I.; Misra, J. J Pharm Sci. 51 (1962) 459.
6. Meliana, Y., Lilik, S., Yi Chia, H., Ta Lin, C., Chern, CS. Colloid and Surface. 389 (2011) 76-81.
7. Asua, J.M. Prog. Polym Sci. 27 (2002) 1283.
8. Taylor , P. Adv Colloid Interface Science 75 (1998) 107-163.
9. Antonietti, M., Landfester, K. Prog. Polym. Sci. 27 (2002) 689-757.
10. Ugelstad, J. , El-Aasser, MS., Vanderhof, JW. J Polym. Sci. Letter Ed 11 (1973) 50313
11. Taylor, P., Ottewill R.H. Prog Colloid Polymer Sci 97 (1994) 199.
12. Kabalnov, AS., Makarov, KN., Pertzov, AV., Shchukin, ED. J Colloid Interface Sci 138 (1990) 98.
13. Taylor , P. Colloids and Surface, Part A: Physicochemical Eng. Aspects 99 (1995) 175-185
14. Sudol, ED., El-Aasser, MS., In Emulsion Polymerization and Emulsion Polymers; Lovell, P.A., El-Aasser, MS., Eds., Chichester. (1997) 699.
15. Chern CS., Chen TJ. Colloids Surface A 138 (1998) 65-74.
16. Chern, CS., Liou YC. Macromol Chem Phys 199 (1998) 2051.
17. Chern CS., Liou YC. Polymer 40 (1999) 3763.
18. Miller, CM., Sudol, ED., Silebi, CA., El-Aasser MS. Macromolecules 28 (1995) 2754.
19. Mouran, D., Reimers, J., Schork, F.J. J Polym Sci Part A: Polym Chem 35 (1997) 595.
20. Goetz , RJ., El-Aasser, MS., Langmuir 6 (1990) 132-136.
21. El-Aasser, MS., Lack, CD., Vanderhoff, JW., Fowkes, FM. J. Colloid surf. 29 (1988) 103.
22. Brouwer, WM., El-Aasser, MS., Vanderhoff, JW. Colloid Surf. 21 (1986) 89.
23. Chou, YJ. ,El-Aasser, MS., Vanderhoff, JW., Polym.Colloids 2 (1980) 599.
24. Delgado, J., El-Aasser, MS., Vanderhoff, JW., J.Polymer Sci. Part A: Polym. Chem 24 (1986) 861.
25. Ugelstad J., Mork PC., Kaggerud KH., Ellingsen T., Berge A. Adv Colloid Interface Sci. 13 (1980)101-140
26. Azad, ARM., Ugelstad J., Fitch RM., Hansen FK. ACS Symposium Series (1976).
27. Goetz, RJ, El Aasser. MS. Langmuir 6 (1990) 132-136
28. Kabalnov, AS, Pertzov, AV., Shchukin, ED., Colloids Surf. 24 (1987). 19.
29. Varesco, C.,Manfrendi, A.,Le Blanc, M., Reiss., JG. 137 J.Colloid Interface Sci (1990) 373
30. Myers D. Surfaces Interfaces and Colloids: Principles and Applications, 2nd ed., Wiley-VCH, New York, 1999, p 254.
31. Landfester, K. Macromol Rapid Commun. 22 (2001) 896-936.
32. Schork, FJ., Luo, Y., Smulder, W., Russum, JP., Butte, A., Fontenot, K. Adv Polym . Sci. 175 (2005) 129-255.
33. Lifshitz, IM., Slezov, VV., J Phys Chem Solids.19 (1961) 35.
34. Wagner , C.,Bunsenges. Phys Chem. 65 (1961) 581.
35. Meliana, Y., Cala, NA., Lin, CT., Chern CS. J. Dispersion of Sci. 31 (2010) 1568-1573.
36. Kabalnov, AS., Markarov, KN., Pertzov, AV., Shchukin, ED. J. Colloid Interface Sci., 138, p. 98 Myers D. Surfaces Interfaces and Colloids: Principles and Applications, 2nd ed., Wiley-VCH, New York, 138 (1990) p.254.
37. Tauer, K., Polymer 46 (2005) 1885.
38. Chern, CS., Lin, CH. J Applied Polymer Sci. 92 (2004) 1961.
39. P. Taylor.,Colloids Surf A:Physicochem. Eng. Aspect (1995) 175
40. Heller, W., Bhatnager, HC., Nakagaki, M., J Chem Phys 36 (1962) 1163
41. Huang, Yi Chia. The effect of mix costabilizer (SMA and LMA) in miniemulsion. Taipei : NTUST, 2011.
42. Vikas, M., Miniemulsion Polymerization Technology. Wiley
43. Miller CM, Venkatesan J, Silebi CA, Sudol ED, El-Aasser MS. J Colloid Interface Sci. 162 (1994) 11-18.
44. Wang H.,Wang M.,Ge X.,Polymer. 49 (2008) 4974-4980.
45. Chibowski, E., Soltys, A., Lazarz, M. Progr Colloid Polym Sci 105 (1997) 260-267.
46. Capek, I.,Advances in Colloid and Interface Sci. 107 (2004) 125-155.
47. Huang, H., Zhang, H., Li,J., Cheng, S., Hu F., Tan,B., J Appl. Polym. Sci. 68 (1998) 2029-39
48. Patist, A.,Journal of Colloid and Interface Sci. 208. (1998). 259-265.
49. Brouwer, WM.,El Aasser, MS.,Vanderhoff, JW. Colloids and Surfaces. 21. (1986) 69-86

QR CODE