簡易檢索 / 詳目顯示

研究生: 柯鈞琢
Chun-Cho Ko
論文名稱: 軟性切換技術應用於具功率因數修正之Cockcroft-Walton倍壓電路之研究
Cockcroft-Walton voltage multiplier with power factor correction based on soft-switching techniques
指導教授: 楊宗銘
Chung-Ming Young
口試委員: 劉益華
Yi-Hua Liu
莊子賢
Tzu Shian Chuang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 86
中文關鍵詞: Cockcroft-Walton倍壓電路主動式緩震電路零電流切換零電壓切換
外文關鍵詞: Cockcroft-Walton, active snubber, zero-current switching, zero-voltage switching
相關次數: 點閱:409下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有別於單級單相交流/高壓直流昇壓型轉換器之功率開關操作於硬式切換,本文提出於此轉換器中加入一輔助電路,使功率開關達成軟性切換之功能,改善開關之切換特性,文中將說明此架構之操作原理,並說明電路元件的設計法則。本文提出之轉換器使用功率因數修正技術,以改善輸入電源電流品質。本文提出之系統,僅需簡單的改變常見的功率因數修正方法之PWM訊號便可使用於本結構上。本文使用一般常見之功率因數控制IC,將產生之PWM訊號加上簡單的邏輯運算後,用以控制主開關及輔助開關。本文實作一輸出500瓦1200伏特之系統電路,以實驗結果驗證此轉換器之可行性。


    This paper proposes a soft-switching technique applying to a single-stage single-phase ac to high voltage dc converter based on Cockcroft-Walton (CW) voltage multiplier circuit. Originally operating under hard-switching, the proposed converter improves switching characteristics by adding an auxiliary circuit for achieving soft-switching. The circuit operation principle of the proposed converter is presented in this paper. The design consideration for determining the values of circuit components used in the implementation is driven as well. For improving the line condition, power factor correction is applied to the proposed converter. Some conventional PFC control methods can be easily adapted to the proposed converter with few modifications. For convenience, this paper employs a commercial PFC IC to implement the controller for the proposed converter. The PWM signal generated form the PFC IC is modified by a simple digital circuit and then sends to the main and auxiliary switches in the power stage. A 500W/1200V prototype is built for test, measurement and evaluation. Finally, the experimental results demonstrate the validity of the proposed converter.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 符號索引 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 系統敘述與研究方法 2 1.3 內容大綱 2 第二章 單級單相交流/高壓直流昇壓轉換器 5 2.1 前言 5 2.2 Cockcroft-Walton倍壓電路 6 2.3 操作原理 7 2.4 電壓增益推導 14 第三章 具軟性切換之單級單相交流/高壓直流昇壓轉換器 19 3.1 前言 19 3.2 軟性切換技術介紹 19 3.3 軟性切換操作原理 21 3.4 電路元件設計 31 第四章 功率因數修正策略及軟性切換時序策略 35 4.1 前言 35 4.2 功率因數修正策略 38 4.3 單週期功率因數修正策略 40 4.4 軟性切換時序策略 43 第五章 系統模擬與實作結果 46 5.1 前言 46 5.2 硬體架構 47 5.2.1 電壓電流回授電路 48 5.2.2 功率因數修正器電路 49 5.2.3 軟性切換時序電路 51 5.2.4 開關驅動電路 52 5.3 電路模擬與實作波形 52 第六章 結論與未來研究方向 67 6.1 結論 67 6.2 未來研究方向 67 參考文獻 69

    [1] W. Yan and F. P. Dawson, “DC ignition circuits for a high pressure vortex-water-wall argon arc lamp,” in Conf. Rec. IEEE Ind. Appl., vol. 4, Oct. 1996, pp. 2211-2218.
    [2] J. Sun, X. Ding, M. Nakaoka and H. Takano, “Series resonant ZCS-PFM DC-DC converter with multistage rectified voltage multiplier and dual-mode PFM control scheme for medical-use high-voltage X-ray power generator,” in Proc. IEE-Elect. Power Appl., vol. 147, no. 6, Nov. 2000, pp. 527-534.
    [3] M. D. Bellar, E. H. Watanabe and A. C. Mesquita, “Analysis of the dynamic and steady-state performance of Cockcroft-Walton cascade rectifier,” IEEE Trans. Power Electron., vol. 7, pp. 526-534. Jul. 1992.
    [4] H. J. Chung, “A CW CO2 laser using a high-voltage dc-dc converter with resonant inverter and Cockroft-Walton multiplier,” Optics and Laser Technology, vol. 38, no. 8, Nov. 2006, pp. 577-584.
    [5] F. Hwang, Y. Shen and S. H. Jayaram, “Low-ripple compact high-voltage dc power supply,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1139-1145, Sept./Oct. 2006.
    [6] I. C. Kobougias and E. C. Tatakis, “Optimal design of a Half Wave Cockroft-Walton Voltage Multiplier with different capacitances per stage.” in Conf. IEEE-EPEPEMC., Sept. 2008, pp. 1274-1279.
    [7] M. M. Weiner, “Analysis of Cockcroft-Walton voltage multipliers with an arbitrary number of stages,” Review of Scientific Instruments, vol. 40, no. 2, Aug. 1969, pp. 330-333.
    [8] F. Belloni, P. Maranesi and M. Riva, “Parameters optimization for improved dynamics of voltage multipliers for space.” in Conf. IEEE-PESC. Annu. Meeting, vol. 1, June 2004, pp. 439-443.
    [9] K. S. Muhammad, A. M. Omar and S. Mekhilef, “Single-phase single-stage high DC voltage multiple converter.” in Conf. Ind. Technology, Dec. 2005, pp. 846-850.
    [10] C. M. Young and M. H. Chen, ”A novel single-phase ac to high voltage dc converter based on Cockcroft-Walton cascade rectifier.” IEEE Power Electr. and Drive Systems International Conf., pp. 822-826, Nov. 2009.
    [11] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters.” IEEE Trans. Ind. Electronics, vol. 50, no. 5, pp. 962-981, Oct. 2003.
    [12] K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter.” Proc. IEE-Elect. Power Applications, vol. 151, no. 2, pp. 182-190, Mar. 2004.
    [13] R. T. H. Li and H. S. H. Chung, “A passive lossless snubber cell with minimum stress and wide soft-switching range.” IEEE Trans. Power Electr., vol. 25, no. 7, pp. 685-692, July 2010.
    [14] N. Mohan, T. M. Undeland and W. P. Robbins, Power electronics: converters, applications, and design, New York: wiley, 3rd ed., 1995.
    [15] R. T. H. Li and H. S. H. Chung, “A passive lossless snubber cell with minimum stress and wide soft-switching range” IEEE Trans. Power Electr., vol. 25, no. 7, pp. 685-692, July 2010.
    [16] C. M. Wang, “A new single-phase ZCS-PWM boost rectifier with high power factor and low conduction losses.” IEEE Trans. Ind. Electr., vol. 53, no 2, pp. 500-510, Apr. 2006.
    [17] G. Hua and F. C. Lee, “Soft-switching Pwm techniques and their applications.” in Proc. EPE., 1993, pp. 87-92.
    [18] K. H. Liu and F. C. Lee, “Zero-voltage switching technique in DC/DC converters.” IEEE Trans. Power Electron., vol. 5, no. 3, pp. 293-304, July 1990.
    [19] M. R. Amini and H. Farzanehfard, “Novel Family of PWM Soft-Single-Switched DC–DC Converters With Coupled Inductors.” IEEE Trans. Ind. Electronics, vol. 56, no. 5, June. 2009.
    [20] G. Hua, E. X. Yang,; Y. Jiang and F. C. Lee, “Novel zero-current-transition PWM converters.” in Conf. Rec. IEEE-PESC. Annu., June. 1993, pp. 538-544.
    [21] C. M. Wang, “A novel ZVS-PWM boost rectifier with high power factor and low conduction losses.” IEEE Trans. Ind. Electr., vol. 52, no 2, pp. 427-435, Apr. 2005.
    [22] C. M. Wang, “A novel ZCS-PWM power-factor preregulator with reduced conduction losses.” IEEE Trans. Ind. Electr., vol. 52, no 3, pp. 689-700, June. 2005.
    [23] R. Gurunathan and A. K. S. Bhat, “ZVT boost converter using a ZCS auxiliary circuit,” IEEE Trans. On Aerospace and Electr. Syst., vol. 37. No3, pp. 889-897, July 2001.
    [24] Z. Z. Ye, M. M. Jovanovic and B. T. Irving, “Digital implementation of a unity-power-factor constant-frequency DCM boost converter.” in Conf. IEEE-APEC., vol. 2, Mar. 2005, pp. 818-824.
    [25] K. M. Smedley and S. Cuk, “One-cycle control of switching converters.” in Conf. IEEE-PESC. Annu., Jun. 1991, pp. 888-896.
    [26] Yue-feng Yao and Yuan-rui Chen “Analysis and Design of One-Cycle-Controlled Dual-Boost Power Factor Corrector.” in Conf. IEEE-IPEMC., vol. 2, Aug. 2006, pp. 1-4.
    [27] J. Luo, M. K. Jeoh and H. C. Huang, “A new continuous conduction mode PFC IC with average current mode control.” in Conf. IEEE-PEDS., vol. 2, Nov. 2003, pp. 1110-1114.
    [28] Infineon Technologies, inc, “AN-EVAL-ICE1PCS01-1.” Data Sheet, June. 2003.

    QR CODE