簡易檢索 / 詳目顯示

研究生: 單啟齊
Chi-Chi Shan
論文名稱: 催化有機小分子氧化反應之鉑-銥-氧化銥薄壁電化學觸媒
Pt-Ir-IrO2 Thin-Wall Electrochemical Catalysts for Oxidation of Small Organic Molecules
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 洪儒生
Lu-Sheng Hong
江志強
Jyh-Chiang Jiang
洪偉修
Wei-Hsiu Hung
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 95
中文關鍵詞: 氧化銥奈米管銥金屬電化學觸媒
外文關鍵詞: iridium oxide, nanotube, iridium metal, electrochemical catalyst
相關次數: 點閱:279下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究氧化銥一維奈米管作為電化學陽極觸媒的潛在應用機會,氧化銥一維奈米管陣列由化學氣相沉積法垂直成長於氧化鋁單晶sapphire (100)基板,奈米管平均高度1150 nm,直徑80-100 nm,壁厚15 nm,藉由高真空熱還原法將氧化銥奈米管部份還原成銥金屬,形成相互連接間格孔洞的金屬顆粒,這些奈米尺寸銥金屬析出時具有(111)、(110)優選晶面,還原並未破壞其整體管狀幾何形狀;隨著還原溫度480~600℃增加,XPS分析量測的銥金屬含量增加,X光繞射峰寬估計之晶粒尺寸從4增加至11 nm。
    氧化銥奈米管對氧化甲醇、乙醇、甲酸、乙二醇及甲醯胺的電化學觸媒活性幾近於零,金屬銥/氧化銥奈米管催化活性較高,經過脈衝式電鍍法製備成Pt/Ir/IrO2電極,電化學觸媒活性陡增。一般而論,小尺寸Ir晶粒、小尺寸Pt晶粒、均勻的Pt分散程度,有利於增加電化學觸媒活性。所製備的電極中鉑(2.9 nm)/銥(500C)/氧化銥、鉑(3.2 nm)/銥(500C)/氧化銥展現最高的甲醇、乙醇、甲酸、乙二醇及甲醯胺氧化觸媒活性,它們的活性與JM PtRu HiSPEC6000活性相當。一氧化碳剝除實驗,Pt/IrO2電極的CO氧化電位稍低於Pt,而Pt/Ir/IrO2電極的CO氧化電位低於Ir/IrO2 0.05 V,低於Pt/IrO2 0.095 V。交流阻抗實驗鉑(2.9 nm)/銥(500C)/氧化銥展現比鉑(3.2 nm)/銥(500C)/氧化銥與銥(500C)/氧化銥低的陽極氧化電荷轉移阻力。


    We have explored the potential applications of IrO2 one-dimensional nanotubes array as the electrochemical anode catalyst in this master thesis. The IrO2 nanotubes were grown vertically on sapphire (100) substrates using chemical vapor deposition. The average tube height was 1150 nm, diameter 80-100 nm, and wall thickness 15 nm approximately. Connected metallic Ir nuclei along with intergranular pores can be obtained from reducting IrO2 nanotubes at elevated temperatures in vacuum, without destroying the integrity of square tube geometry. The nanometer size Ir grains were nucleated with preferred crystal planes of (111) and (110). As the reduction temperature increased from 480 to 600C, the Ir metal content measured by XPS also increased, and the Ir grain size estimated from the X-ray peak broadening increased from 4 to 11 nm.
    The Ir/IrO2 tubes exhibited somewhat catalytic effect in oxidation of methanol (MeOH), ethanol (EtOH), formic acid (FA), ethylene glycol (EG), and formamide (FM), while the catalytic effects of IrO2 tubes were trivial. After Pt pulse electrodeposition on Ir/IrO2 tubes, the catalytic effects in oxidation of MeOH, EtOH, FA, EG, FM were enhanced tremendously. Generally, a small Ir grain size, a small Pt grain size, and a better Pt dispersion would benefit the catalytic properties of Pt/Ir/IrO2 tubes. Two electrodes of Pt(2.9nm)/Ir(500C)/IrO2 and Pt(3.2 nm)/Ir(500C)/IrO2 stood out in oxidation of MeOH, EtOH, FA, and EG, they had comparable catalytic effects similar to those of JM PtRu HiSPEC6000. In the CO stripping experiments, the peak potential in CO oxidation of Pt/IrO2 was slightly lower than that of Pt, and the peak potential of Pt/Ir/IrO2 was lower than that of Ir/IrO2 by 0.05 V, and that of Pt/IrO2 by 0.095 V at 25C. In the AC impedance experiements, the Pt(2.9 nm)/Ir(500C)/IrO2 electrode exhibited the lowest charge transfer resistance, when compared with Pt(3.2 nm)/Ir(500C)/IrO2 and Ir/IrO2.

    中文摘要……………………………………………….............……...Ⅰ 英文摘要……………………………………………………................Ⅲ 誌謝……………………………………………………….....................Ⅴ 目錄………………………………………………………….................Ⅵ 圖目錄………………………………………………………...............ⅠⅩ 表目錄……………………………………………………...…............ⅩⅡ 第一章 緒論…...…………………………………………............…....1 1.1二氧化銥晶體結構………………………………………………..….1 1.2二氧化銥晶體之金屬導電性……………………………………..….4 1.3銥與鉑金屬之晶體結構………………………………………….…..6 1.4氧化銥晶體穩定性及應用……………………………………….…..7 1.5一維奈米結構材料……………………………………………….......9 1.6氧化銥與金屬銥的電化學性質…………………………………….11 第二章 文獻回顧…………………………………………................15 2.1前言……………………………………………………………….....15 2.2直接甲醇燃料電池(DMFC)………………………………………..16 2.3陽極觸媒反應機制…………………………………………….........18 2.4合成陽極觸媒…………………………………………….…………20 2.5研究動機………………………………………………….…………22 第三章 實驗方法及分析儀器……………………………........….23 3.1實驗藥品及規格…………………………………………….………23 3.2分析儀器………………………………………………………….…25 3.3氧化銥奈米管MOCVD沉積系統…………………………….…...28 3.4實驗流程…………………………………………………………….30 3.4.1晶片潔淨處理……………………………………………………31 3.4.2二氧化銥奈米管沉積步驟………………………………….…...31 3.4.3高真空下熱還原氧化銥奈米管……………………………....…33 3.4.4製備Pt/Ir/IrO2電極……………………………….………….…..34 3.4.5電化學觸媒活性分析……………………………………………36 第四章 結果與討論…………………………………………...........37 4.1氧化銥一維奈米管成長與分析……….……………………………37 4.1.1氧化銥奈米管SEM電鏡圖……….…………………………….38 4.1.2氧化銥奈米管TEM電鏡圖……………………………………..40 4.1.3氧化銥奈米管XRD繞射圖譜…………………………………..41 4.2 還原後氧化銥奈米管結構…………..........…….………….….......42 4.2.1金屬銥/氧化銥奈米管SEM電鏡圖…………………………….42 4.2.2 金屬銥/氧化銥奈米管TEM電鏡分析…………………………44 4.2.3金屬銥/氧化銥奈米管XRD分析……….………………………49 4.2.4金屬銥/氧化銥奈米管XPS組成分析…………………………..51 4.3 氧化銥奈米管陽極觸媒電化學活性……...............………………54 4.3.1 氧化銥奈米管觸媒效應………………………..………………54 4.3.2金屬銥/氧化銥奈米管觸媒效應………………...………………55 4.4 鉑/銥/氧化銥奈米管陽極觸媒電化學測試………...............……..58 4.4.1 鉑/氧化銥奈米管觸媒效應……………………………….……58 4.4.2 鉑/銥/氧化銥奈米管觸媒效應…………………………………65 4.5 陽極觸媒對一氧化碳剝除實驗…………………...........................79 4.6 陽極觸媒交流阻抗分析…………………………...........................85 4.7 長時間陽極觸媒測試…………………………...............................88 第五章 結論…...…………………......................................................89 參考文獻………..........................................…………………………..91

    1. JCPDS file, Iridium oxide 43-1019
    2. L. F. Mattheiss, Phys. Rev. B, 13 (1976) 2433
    3. 余樹楨, “晶體之結構與性質”, 國立編譯館, (1989) 280
    4. W. D. Ryden, A. W. Lawson, and C. C. Sartain, Phys. Rev. B, 1 (1970) 1494
    5. R. C. Weast (Ed.), Handbook and Chemistry and Physics, F146 (1989)
    6. R. R. Daniels, and G. Margaritiondo, Phys. Rev. B, 29 (1984) 1813
    7. 陳信義, “冷壁式有機金屬化學氣相沉積法製備二氧化銥薄膜及其特性分析”, 台灣科技大學, (2001)
    8. T. Nakamura, K. Nakao, A. Kamisawa, and H. Takasu, Jpn. J. Appl. Phys.Part 1, 34 (1995) 5184
    9. T. Tamura, K. Matsuura, H. Ashida, K. Kondo, and S. Otani, Appl. Phys. Lett., 74 (1999) 3395
    10. T. Nakamura, Y. Nakao, A. Kamisawa, and H. Takasu, Appl. Phys. Lett., 65 (1994) 1522
    11. A. Osaka, T. Takatsuna, Y. Miura, J. Non-Cryst. Solids, 178 (1994) 313
    12. N. Bestaoui, E. Prouzet, P. Deniard, and R. Brec, Thin Solid Films, 235 (1993) 35
    13. T. Ioroi, N. Kitazawa, K. Yasuda, Y. Yamamoto, H. Takenaka, J. Electrochem. Soc., 147 (2000) 2018
    14. R. S. Chen, Y. S. Huang, Y. M. Liang, C. S. Hsieh, D. S Tsai, K. K. Tiong, Appl. Phys. Lett, 84 (2004) 1552
    15. A. Karthugeyan, R. P. Gupta, K. Scharnagl, M. Burgmair, S. K. Sharma, I. Eisele, Sens. Actuators B, 85 (2002) 145
    16. B. R. Chalamala, Y. Wei, Robert H. Reuss, S. Aggarwal, S. R. Perusse, B. E. Gnade, R. Ramesh, J. Vac. Sci. Technol. B, 18 (2000) 1919
    17. S. Y. Cha and H. C. Lee, Jpn. J. Appl. Phys. Part 2, 10A (1999) L1128
    18. Y. S. Huang and S. S. Lin, Solid State Commun., 70 (1989) 517
    19. S. Iijima, Nature, 354 (1991) 56
    20. C. M. Lieber, Solid State Commun., 107 (1998) 607
    21. L. C. Chen, S. W. Chang, C. Y. Wen, J. J. Wu, Y. F. Chen, Y. S. Huang, K. H. Chen, J. Phys. Chem. Solids, 62 (2001) 1567
    22. Z. W. Pan, Z. R. Dai, Z. L. Wang, Science, 291 (2001) 1947
    23. W. Yi, T. Jeong, S. Yu, J. Heo, C. Lee, J. Lee, W. Kim, J. B. Yoo, J. Kim, Adv. Mater., 14 (2002) 1464
    24. E. A. Whitsitt, A. R. Barron, Nano Lett., 3 (2003) 775
    25. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science, 292 (2001) 1897
    26. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater., 13 (2001) 113
    27. J. J. Wu, S. C. Liu, J. Phys. Chem. B, 106 (2002) 9546
    28. J. J. Wu, S. C. Liu, Adv. Mater. 14 (2002) 215
    29. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, J. M. Kim, Adv. Mater., 12 (2000) 746
    30. Z. R. Dai, J. L. Gole, J. D. Stout, and Z. L. Wang, J. Phys. Chem. B, 106 (2002) 1274
    31. Y. Liu, J. Dong, and M. Liu, Adv. Mater., 16 (2004) 353.
    32. D. F. Zhang, L. D. Sun, J. L. Yin, C. H. Yan, Adv. Mater., 15 (2003) 1022
    33. B. C. Satishkumar, A. Govindaraj, M. Nath, C. N. R. Rao, J. Mater. Chem., 10 (2000) 2115
    34. J. V. Ryan, A. D. Berry, M. L. Anderson, J. M. Long, R. M. Stroud, V. M. Cepak, V. M. Browning, D. R. Rolison, C. I. Merzbacher, Nature, 406 (2000) 169
    35. K.W. Cheng, Y. T. Lin, C. Y. Chen, C. P. Hsiung, J. Y. Gan, J. W. Yeh, C. H. Hsieh, L. J. Chou, Appl. Phys. Lett 88 (2006) 043115
    36. J. M. Hu, J. Q. Zhang, C. N. Cao, Int. J. Hydrogen Energy, 29 (2004) 791
    37. C. P. de Pauli, S. Trasatti, J. Electroanal. Chem., 538-539 (2002) 145
    38. A. J. Terezo, E. C. Pereira, Electrochimica Acta, 45 (2000) 4351
    39. M. V. Kortenaar, J. F. Vente, D. J. W. IJdo, S. Müller, R. Kötz, J. power Sources, 56 (1995) 51
    40. R. Kotz, S. Stucki, Electrochimica Acta, 31 (1986) 1311
    41. F. I. Mattos-Costa, P. de Lima-Net, S. A. S. Machado, L. A. Avaca, Electrochimia Acta, 44 (1998) 1515
    42. R. D. Meyer, S. F. Cogan, T. H. Nguyen, R. D. Rauh, IEEE trans on Natural Systems and Rehabilitation Engineering, 9 (2001) 2
    43. S. C. Mailley, M. Hyland, P. Mailley, J. M. McLaughlin, E. T. McAdams, Mater. Sci. Eng’ng., 21 (2002) 167
    44. A. Blau,C. Ziegler, M. Heyer, F. Endres, G. W. Gopel, Biosenser & Bioelectronics, 12 (1997) 883
    45. A. Norlin, J. Pau, C. Leygraph, J. Electrochem. Soc., 152 (2005) J85
    46. S. D. Yim, W.Y. Lee, Y. G. Yoon, Y. J. Sohn, G. G. Park, T.H. Yang, C. S. Kim, Electrochimica Acta , 50 (2004) 713
    47. S. D.Yim, G. G. Park, Y. J. Sohn, W. Y. Lee, Y. G. Yoon, T. H. Yang, S. K. Um, S. P. Yu, C. S. Kim, Int. J. Hydrogen Energy, 30 (2005) 13450
    48. A. Hamnett, B. J. Kennedy, Electrochimica Acta, 33 (1988)1613
    49. H. Tsaprailis, V. I. Birss, Electrochem. Solid-State Lett., 7 (2004) A348
    50. A. Chen, D. J. La Russa, B. Miller, Langmuir, 20 (2004) 9695
    51. R. Gómez, M. J. Weavrz, Langmuir, 14 (1998) 2525
    52. C. Tang, S. Zou, M. W. Severson, M. J. Weaver, J. Phys. Chem. B, 102 (1998) 8546
    53. R. Gómez, M. J. Weaver, J. Phys. Chem. B, 102 (1998) 3754
    54. R. Gómez, M. J. Weaver, J. Electroanal. Chem., 435 (1997) 205
    55. M. M. Hefny, S. Abdel-Wanees, Electrochimica Acta, 41 (1996) 1419
    56. R. Ortiz, O. P. Marguez. C. Gutierrez, J. Phys. Chem., 100 (1996) 8389
    57. Thorsten Schultz, Su Zhou, Kai Sundmacher, Chem. Eng. Technal., 24 (2001) 1223
    58. R. Liu, H. Iddir, Q. Fan, G. Hou, A. Bo, K. L. Ley, E. S. Smotkin, J. Phys. Chem. B, 104 (2000) 3518
    59. W. F. Lin, M. S. Zei, M. Eiswirth, G. Ertl, T. Iwasita, W. Vielstich, J. Phys. Chem. B, 103 (1999) 6968
    60. A. K. Shukla, R. K. Raman, N. A. Choudhury, R. K. Priolkar, P. R. Sarode, S. Emura, R. Kumashiro, J. Electroanal. Chem., 563 (2004) 181
    61. B. Beden, F. Kadirgan, C. Lamy, J. M. Leger, J. Electroanal. Chem., 127 75 (1981)
    62. C. J. Zhong, M. M. Maye, Adv. Mater., 13 (2001) 1507
    63. A. Hamnett, Catal. Today, 38 (1997) 445
    64. T. Kawaguchi, W. Sugimoto, W. Murakami, W. Takasu, Electrochem. Commun., 6 (2004) 480
    65. H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D. P. Wilkinson, J. Power Sources, 155 (2006) 95
    66. Y. Takasu, T. Fujiwara, Y. Murakami, K. Sasaki, M. Oguri, T. Asaki, W. Sugimoto, J. Electrochem. Soc., 147 (2000) 4421
    67. M. Wantanabe, M. Uchida, S. Motoo, J. Electroanal. Chem., 229 (1987) 395
    68. Y. Takasu., T. Kawaguchi, W. Sugimoto, Y. Murakami, Electrochimica Acta, 48 (2003) 3861
    69. Z. Liu, X. Lin, J. Y. Lee, W. S. Zhang, M. Han, L. M. Gan, Langmuir, 18 (2002) 4054
    70. C.Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, Y. Yan, Nano Lett. 4 (2004) 345
    71. E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E. S. Smotkin, T. E. Mallouk, Science, 280 (1998) 1735
    72. W. C. Choi, J. D. Kim, S. I. Woo, Catal Today, 74 (2002) 235
    73. 王必先, “二氧化銥單晶表面的掃描穿隧式電子顯微術研究”, 台灣科技大學 (2006)
    74. G. K. Wertheim, H. J Guggenheim, Phys Rev., B22 (1980) 4680
    75. R. S. Chen, H. M. Chang, Y. S. Huang, D. S. Tsai, S. Chattopadhyay, K. H. Chen, J. Cryst. Growth, 271 (2004) 105
    76. V. I. Birss, H. Andreas, I. Serebrennikova, H. Elzanowska, Electrochem. Solid-State Lett., 2 (1999) 326
    77. A. Aramata, T. Yamazaki, K. Kunimatsu, M. Enyo, J. Phys. Chem., 91 (1987) 2309
    78. S. T. Brankovic, J. McBreen, R. R. Adžić, J. Electroanal. Chem., 503 (2001) 99
    79. 彭文權, “以沉積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒”, 元智大學(1997)
    80. T. D. Tran, H. L. Stanely, Anal. Chem., 65 (1993) 1805
    81. M. Boudart, Adv. Catal, 19 (1969) 153
    82. T. R. Ralph, M. P. Hogarth, Platinum Metals Rev., 46 (2002) 117

    QR CODE