簡易檢索 / 詳目顯示

研究生: 辜振維
Cheng-Wei Ku
論文名稱: X光吸收光譜對超量Te原子添加及氣凝膠化之熱電材料Bi0.5Sb1.5Te3特性之研究
Characterizations of Thermoelectric Material Bi0.3Sb1.5Te3 with Excess Tellurium Atoms and Aerogel-based Treatment by X-ray Absorption Spectroscopy
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 陳啟亮
Chi-Liang Chen
陳良益
Liang-Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 76
中文關鍵詞: Bi0.5Sb1.5Te3氣凝膠X光吸收光譜ZT值
外文關鍵詞: Bi0.5Sb1.5Te3, EXAFS, ZT value
相關次數: 點閱:225下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球能源需求的逐漸增加,以及現代氣候之驟變,開發新穎的汲取能源方式,且讓地球承受較低的負擔,是近代能源議題的發展方向,而熱電材料一直被視為具有潛力的能源轉換材料之一。熱電材料有多種的優點:熱能與電能之間是直接的轉換、由於為固態裝置且體積小,故易於行動、反應迅速且能量轉換具可逆性。過去數十年來的研究,低轉換效率限制了熱電材料的發展性,所以尋找更適合的材料,或優化現有材料以提升其熱電性質,是此領域當今主要的研究方向。
    Bi-Te系列合金為低溫區段所普遍使用之熱電材料,本研究樣品以Bi0.5Sb1.5Te3(BST)合金為基材,分別運用液流加壓法、氣凝膠法,以及同時結合兩種加工法,有效的改變材料之熱電性質,使材料的熱電轉換效率有顯著的上升。根據文獻指出,以液流加壓法可以使超量的Te原子於晶界產生差排;而運用氣凝膠的手法,能夠使物質形成具有奈米級多孔洞的結構。上述兩種現象的產生,都是希望增加材料內聲子散射機制及降低聲子熱傳導(KL),以達到提升ZT值的效果。
    本研究欲探討在固定局部結構中,熱電性質與電子-軌域相互作用的關聯性、透過延伸X光吸收精細結構圖譜(EXAFS)研究局部原子/電子結構與熱電性質之間的相關性。我們的結果進一步顯示,在對BST進行不同的加工手法後,原子間的鍵長有所改變,且晶格排序程度也有所影響。


    With the world’s growing energy needs and climate drastically changing, creating innovative ways to obtain energy by low influence burden to the earth is the development directions of the modern energy issue. Having been regarded as potential energy conversion materials, thermoelectric materials which move conveniently by small solid-state size convert energy directly, rapidly and reversibly between thermal and electrical energy. Decades of researching, the development of thermoelectric materials is limited with the low conversion efficiency, so looking for more suitable materials or optimizing the existing materials to enhance their thermoelectric properties is the main research direction in this field.
    Bi-Te based alloy is the thermoelectric material that widely used within low temperature range, so we took Bi0.5Sb1.5Te3 (BST) as the substrate, applying the liquid flow method and aerogel method respectively and at the same time. Then we successfully changed the samples’ thermoelectric properties and increased the conversion efficiency significantly. According to the reference, the excess tellurium atoms on the grain boundary can be caused by liquid flow method; and nanoscale porous structure can be generated in materials by aerogel method. As mentioned above, those mechanisms are expected to increase the phonon scattering and to reduce the phonon thermal conductivity (KL), so that the ZT value can be enhanced.
    In this study, we probed into the correlation between thermoelectric properties and electron-orbital interaction upon the fixed local structure symmetry. Correlations between local atomic/electronic structure and thermoelectric properties are investigated by Extended X-ray absorption fine structure spectrum (EXAFS). Our results show that the bond length between the atoms is changed and the lattice sequence is also affected by the different processing method for BST.

    摘要 I Abstract II 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 基礎理論與文獻回顧 3 2.1 熱電材料 3 2.1.1熱電效應 3 2.1.1.1 Seebeck效應 3 2.1.1.2 Peltier效應 4 2.1.1.3 Thomson效應 5 2.1.2熱電轉換效率 6 2.1.2.1 發電機 6 2.1.2.2 致冷機 7 2.1.2.3 熱電優值與轉換效率 8 2.1.3熱電性質的改善 11 2.1.3.1 聲子對熱傳導係數的影響 11 2.1.3.2 電子對熱傳導係數的影響 13 2.1.4 Bi2Te3合金 14 2.1.4.1 Bi2Te3晶體結構 14 2.1.4.2 Bi2Te3傳輸性質 16 2.1.4.3 Bi2Te3晶格缺陷 16 2.2 氣凝膠 18 2.2.1 氣凝膠簡介 18 2.2.2 氣凝膠的應用 19 2.2.2.1 低熱傳導係數的應用 19 2.2.2.2 低介電常數的應用 20 2.2.2.3高比表面積的應用 20 2.2.2.4 低折射率的應用 21 2.2.3 氣凝膠之熱傳導探討 22 第三章 實驗方法及步驟 25 3.1 XRD分析 25 3.2 X光吸收光譜分析技術 27 3.2.1 XAS分析介紹 27 3.2.2 XAS分析量測原理 29 3.2.3 XAS 數譜分析 32 第四章 結果與討論 46 4.1 BST 系列 46 4.2 BST aerogel 系列 59 第五章 結論 72 文獻參考 74

    1. Kim, S.I., et al., Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015. 348(6230): p. 109-114.
    2. Rowe, D.M., Thermoelectrics handbook: macro to nano. 2005: CRC press.
    3. Seebeck, T.J., Ueber die magnetische Polarisation der Metalle und Erze durch Temperaturdifferenz. Annalen der Physik, 1826. 82(3): p. 253-286.
    4. J.C.Peltier, Nouvelles experiences sur la caloriecete des courans electriques. Ann. Chem., 1834. LVI: p. 374.
    5. Chen, J., Z. Yan, and L. Wu, The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator. Journal of applied physics, 1996. 79(11): p. 8823-8828.
    6. Skrabek, E. and J.W. McGrew. Pioneer 10 and 11 RTG performance update. in Space Nuclear Power Systems. 1987.
    7. Lan, Y., et al., Enhancement of thermoelectric figure‐of‐merit by a bulk nanostructuring approach. Advanced Functional Materials, 2010. 20(3): p. 357-376.
    8. Sales, B., D. Mandrus, and R.K. Williams, Filled skutterudite antimonides: a new class of thermoelectric materials. Science, 1996. 272(5266): p. 1325.
    9. Venkatasubramanian, R., et al., Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001. 413(6856): p. 597-602.
    10. Hochbaum, A.I., et al., Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008. 451(7175): p. 163-167.
    11. Michel, S., et al., Characterisation of electroplated Bi2 (Te1− xSex) 3 alloys. Journal of Solid State Electrochemistry, 2008. 12(1): p. 95-101.
    12. Ma, Y., et al., Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Letters, 2008. 8(8): p. 2580-2584.
    13. Kim, D.-H. and T. Mitani, Thermoelectric properties of fine-grained Bi 2 Te 3 alloys. Journal of alloys and compounds, 2005. 399(1): p. 14-19.
    14. Cao, Y., et al., Nanostructuring and improved performance of ternary Bi–Sb–Te thermoelectric materials. Applied Physics A: Materials Science & Processing, 2008. 92(2): p. 321-324.
    15. Miller, G. and C.-Y. Li, Evidence for the existence of antistructure defects in bismuth telluride by density measurements. Journal of Physics and Chemistry of Solids, 1965. 26(1): p. 173-177.
    16. Starý, Z., et al., Antisite defects in Sb2− xBixTe3 mixed crystals. Journal of Physics and Chemistry of Solids, 1988. 49(1): p. 29-34.
    17. 王天路, 劉., 氧化矽氣凝膠之應用. 化工資訊與商情, 2003. 十二月號六期: p. 90-96.
    18. Li, W., H. Pröbstle, and J. Fricke, Electrochemical behavior of mixed C m RF based carbon aerogels as electrode materials for supercapacitors. Journal of non-crystalline solids, 2003. 325(1): p. 1-5.
    19. 林文發, 周., 隔熱材料的明星材料. 化工資訊, 2001(四十八期): p. 48-53.
    20. Mohanan, J.L., I.U. Arachchige, and S.L. Brock, Porous semiconductor chalcogenide aerogels. Science, 2005. 307(5708): p. 397-400.
    21. Baumann, T.F., et al., Facile Synthesis of a Crystalline, High‐Surface‐Area SnO2 Aerogel. Advanced Materials, 2005. 17(12): p. 1546-1548.
    22. 魏得育, 呂., 最輕的固體. 科學發展, 2006(402期): p. 60-65.
    23. Jensen, K.I., J.M. Schultz, and F.H. Kristiansen, Development of windows based on highly insulating aerogel glazings. Journal of Non-Crystalline Solids, 2004. 350: p. 351-357.
    24. Kim, G.S. and S.H. Hyun, Synthesis and characterization of silica aerogel films for inter-metal dielectrics via ambient drying. Thin Solid Films, 2004. 460(1): p. 190-200.
    25. Pröbstle, H., C. Schmitt, and J. Fricke, Button cell supercapacitors with monolithic carbon aerogels. Journal of Power Sources, 2002. 105(2): p. 189-194.
    26. Tsutsui, T., et al., Doubling Coupling‐Out Efficiency in Organic Light‐Emitting Devices Using a Thin Silica Aerogel Layer. Advanced Materials, 2001. 13(15): p. 1149-1152.
    27. Pierre, A.C. and G.M. Pajonk, Chemistry of aerogels and their applications. Chemical Reviews, 2002. 102(11): p. 4243-4266.
    28. Yoldas, B., M. Annen, and J. Bostaph, Chemical engineering of aerogel morphology formed under nonsupercritical conditions for thermal insulation. Chemistry of materials, 2000. 12(8): p. 2475-2484.
    29. 鄭信民, et al., X 光繞射應用簡介. 工業材料雜誌 (181), 頁, 2002: p. 100-108.
    30. Patterson, A., The Scherrer formula for X-ray particle size determination. Physical review, 1939. 56(10): p. 978.
    31. Sayers, D.E., E.A. Stern, and F.W. Lytle, New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray—absorption fine structure. Physical Review Letters, 1971. 27(18): p. 1204.
    32. Koningsberger, D. and R. Prins, X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. 1988.
    33. Teo, B.K., EXAFS: basic principles and data analysis. Vol. 9. 2012: Springer Science & Business Media.
    34. Bianconi, A., L. Inoccia, and S. Stipcich, EXAFS and Near Edge Structure: Proceedings of the International Conference Frascati, Italy, September 13–17, 1982. Vol. 27. 2012: Springer Science & Business Media.
    35. Winick, H. and S. Doniach, Synchrotron radiation research. 2012: Springer Science & Business Media.

    無法下載圖示 全文公開日期 2022/08/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE