簡易檢索 / 詳目顯示

研究生: 蘇立雅
Li-ya Su
論文名稱: 科學與技術關聯性分析:以磷酸鋰鐵電池技術演化為例
Exploring the Linkage between Science and Technology:The Technology Evolution of Lithium Iron Phosphate Battery
指導教授: 劉顯仲
John S. Liu
口試委員: 何秀青
none
盧煜煬
none
陳宥杉
none
學位類別: 碩士
Master
系所名稱: 管理學院 - 科技管理研究所
Graduate Institute of Technology Management
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 74
中文關鍵詞: 科學與技術關聯性分析主路徑分析磷酸鋰鐵電池知識傳遞
外文關鍵詞: Scientific linkage, main path analysis, lithium iron phosphate, knowledge transfer
相關次數: 點閱:397下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去學者研究以直接觀察專利首頁上其他參考文獻(other references)段落引用學術論文的現象,綜觀得出科學與技術兩者之間存有關聯的結論 (Scientific Linkage),然此類研究並未明確指出科學與技術兩者在發展軌跡上的關聯性及其關聯現象,亦即學術與技術的主要文獻是否也存有關聯,以進一步了解科學與技術之主要發展的關聯緊密程度。本研究透過連結專利與學術主路徑,找出兩者關聯性以及兩者於各自發展軌跡下的關聯程度,以補強過去分析法之不足,並藉此增加企業及研發者在技術發展時的知識參照標的,掌握關鍵知識加速研發,利於企業在快速變化的高科技產業中發展及生存。

    隨節能減碳意識興起,相關電動車產業亦獲得市場重視,而其所含的電池技術中,磷酸鋰鐵電池相較其他電池,具有較高安全性、原料價格低、對環境無毒無汙染等優點,可望成為未來電動車電池發展重點。該電池發展由美國Goodenough教授於1997年首先在學術論文上提出,本研究以USPTO美國核准專利為研究範圍,運用主路徑分析法找出主要發展趨勢線,繼而對照專利主路徑文獻引用與學術主路徑的文獻關係,除以視覺化連線呈現兩個路徑的關係外並利用交叉比率分析探究其關係之強度。

    研究結果顯示,主路徑汲取出的主要代表學術作者與專利發明人,都可對照出有相關之專利及學術論文的發表,顯示技術與科學間存有關聯。再由專利主路徑確實有引用學術主路徑論文現象,瞭解技術與學術發展之主要文獻的關聯性,其中,啟蒙論文被引用的情形相對明顯,研究結果亦得出專利與學術間的引用有國家引用偏好的現象;而從交叉比率分析可以證明專利主路徑 (關鍵技術) 引用學術主路徑 (關鍵科學) 的比率高於非專利主路徑 (非關鍵技術) 之引用,顯示技術主要發展與科學主要文獻知識傳遞間的關聯性高於非主要技術發展的關聯。


    The linkage between science and technology has drawn much attention from many researchers in the innovation, general science and technology study field. Based on the citation frequency from patents to academic articles, researchers have shown the existence of strong connections between science and technology. This study provides further evidences on the linkage by examining the relationships between the core patents and academic articles of the lithium iron phosphate battery (LFP) technology. We collect 215 LFP patents from the United State Patent and Trademark Office database and conduct the main path analysis to identify the main development paths of the LFP technology (main path technology, MPT). These paths are then compared with the main development paths of the LFP science (main path science, MPS), which were obtained in the previous study from academic articles of the same field. The connections between MPT and MPS are presented visually and examined quantitatively. The results showed a relatively close relationship between MPS and MPT. Cross-ratio examinations revealed that in terms of ratio the MPT patents cited more MPS papers than non-MPT did. In other words, the relationship between core technology patents and science papers is stronger than that between non-core patents and core papers.

    目錄 摘要i Abstractiii 目錄vi 表目錄viii 圖目錄viii 第壹章 緒論1 一、研究背景與動機1 二、研究目的與問題5 第貳章 文獻探討6 一、科學與技術關聯性6 (一) 科學與技術關聯性現象7 (二) 科學與技術關聯性模型9 二、主路徑分析11 三、磷酸鋰鐵電池18 (一) 磷酸鋰鐵合成方法19 (二) 磷酸鋰鐵充放電離子嵌入/脫嵌模型22 (三) 磷酸鋰鐵電池性能改善23 第參章 研究方法26 一、研究架構26 (一) 資料來源27 (二) 資料蒐集與關鍵字檢索28 二、交叉比率分析37 三、論文作者與專利發明人比對39 四、主路徑分析與Pajek39 第肆章 研究結果41 一、視覺化連線41 二、交叉比率分析46 三、表格呈現51 四、論文作者與專利發明人比對58 第伍章 結論與建議63 一、結論63 (一) 視覺化連線分析63 (二) 比率分析64 (三)表格呈現64 (四) 論文作者與專利發明人比對65 二、管理意涵67 三、研究限制與未來建議67 參考文獻69

    1.高肇遠 (2011),專利文件與學術論文先驅性之比較與分析,國立台灣科技大學科技管理研究所碩士論文。
    2.曾祐強 (2011),磷酸鋰鐵電池發展趨勢─學術論文之主路徑分析,國立台灣大學科技管理研究所碩士論文。
    3.Andersson, A. S., Thomas, J. O., Kalska, B., Haggstrom, L. (2000), Thermal stability of LiFePO4-based cathodes, Electrochemical and Solid State Letters, Vol. 3(2), P66-68.
    4.Andersson, A. S., Thomas, J. O. (2001), The source of first-cycle capacity loss in LiFePO4, Journal of Power Sources, Vol. 97-98, P498-502.
    5.Arnold, G., Garche, J., Hemmer, R., Strobele, S., Vogler, C., Wohlfahrt-Mehrens, A. (2003), Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique, Journal of Power Sources, Vol. 119, P247-251.
    6.Batagelj, V. (2003),Efficient algorithms for citation network analysis. University of Ljubljana, Institute of Mathematics, Physics and Mechanics Department of Theoretical Computer Science, Preprint Series, Vol. 41, P897.
    7.Bewlay, S. L., Konstantinov, K., Wang, G. X., Dou, S. X., Liu, H. K. (2004), Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source, Materials Letters, Vol. 58(11), P1788-1791.
    8.Bhattacharya, S., Meyer, M. (2003), Large firms and the science-technology interface. Patents, patent citations, and scientific output of multinational corporations in thin films, Scientometrics, Vol. 58(2), P265–279.
    9.Bhattacharya, S., Kretschmer, H., Meyer, M. (2003), Characterizing intellectual spaces between science and technology, Scientometrics, Vol. 58(2), P369-390.
    10.Carley, K. M., Hummon, N. P., Harty M. (1993), Scientific influence: An analysis of the main-path structure in the Journal of Conflict Resolution, Science Communication, Vol. 14, P417-447.
    11.Carpenter, M. P., Cooper, M., Narin, F. (1980), Linkage between basic research literature and patents,Research Management, Vol. 23(2), P30-35.
    12.Carpenter, M. P., Narin, F. (1983), Validation Study: Patent Citations asIndicators of Science and Foreign Dependence,World Patent information, Vol. 5(3), P180-185.
    13.Chen, C. M., Hicks, D. (2004), Tracing knowledge diffusion,Scientometrics, Vol. 59(2), P199-211.
    14.Choi, D., Kumta, P. N. (2007), Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries,Journal of Power Sources, Vol. 163(2), P1064-1069.
    15.Chung, S. Y., Bloking, J. T., Chiang, Y. M. (2002), Electronically conductive phospho-olivines as lithium storage electrodes, Nature Materials, Vol. 1(2), P123-128.
    16.Collins, P., Wyatt, S. (1988), Citations in patents to the basic research literature, Research Policy, Vol. 17(2), P65-74.
    17.Croce, F., D'Epifanioa, A., Hassoun, J., Deptula, A., Olczac, T., Scrosati, B. (2002), A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode, Electrochemical and Solid State Letters, Vol. 5(3), PA47-A50.
    18.Delmas, C., Maccario, M., Croguennec, L., Le Cras, F., Weill, F. (2008),Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model,NatureMaterials, Vol. 7(8), P665-671.
    19.Dominko, R., Bele, M., Gaberscek, M., Remskar, M., Hanzel, D., Pejovnik, S., Jamnik, J. (2005), Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites, Journal of the Electrochemical Society, Vol. 152(3), PA607-A610.
    20.Dominko, R., Bele, M., Goupil, J. M., Gaberscek, M., Hanzel, D., Arcon, I.Jamnik, J. (2007),Wired porous cathode materials: A novel concept for synthesis of LiFePO4, Chemistry of Materials, Vol. 19(12), P2960-2969.
    21.Garfield, E., Sher, I. H., Torpie, R. J. (1964),The use of citation data in writing the history of science, Philadelphia: Institute for Scientific Information.
    22.Gerdsri, N., Daim, T. U. (2008), Generating Intelligence on The Research and Development Progress of Emerging Technologies Using Patent and Publication Information, Proceedings of the 2008 IEEE ICMIT, Bangkok, P1-6.
    23.Guan, J. C., He, Y. (2007), Patent-bibliometric analysis on the Chinese science - technology linkages, Scientometrics, Vol. 72(3), P403-425.
    24.Higuchi, M., Katayama, K., Azuma, Y., Yukawa, M., Suhara, M. (2003),Synthesis of LiFePO4 cathode material by microwave processing, Journal of Power Sources, Vol. 119, P258-261.
    25.Huang, H., Yin, S. C., Nazar, L. F. (2001), Approaching theoretical capacity of LiFePO4 at room temperature at high rates, Electrochemical and Solid State Letters, Vol. 4(10), PA170-A172.
    26.Hummon, N. P., Doreian, P., (1989), Connectivity in a citation network:Thedevelopment of DNA theory, Social Networks, Vol. 11, P39-63.
    27.Iversen, E. J. (2000), An excursion into the patent-bibliometrics of Norwegian patenting, Scientometrics, Vol. 49(1), P63-80.
    28.Laffont, L., Delacourt, C., Gibot, P., Wu, M. Y., Kooyman, P., Masquelier, C., Tarascon, J. M. (2006), Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy, Chemistry of Materials, Vol. 18(23), P5520-5529.
    29.Liu, J. S., Lu, L. Y. Y. (2012), An Integrated Approach for Main Path Analysis: Development of the Hirsch Index as an Example, Journal of the American Society for Information Science and Technology, Vol. 63(3), P528-542.
    30.Lo, S. C. S. (2010), Scientific linkage of science research and technology development: a case of genetic engineering research, Scientometrics, Vol. 82(1), P109-120.
    31.MacNeil, D. D., Lu, Z. H., Chen, Z. H., Dahn, J. R. (2002), A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes, Journal of Power Sources, Vol. 108(1-2), P8-14.
    32.Meyer, M. (2000a), Does science push technology? Patents citing scientific literature, Research Policy, Vol. 29(3), P409-434.
    33.Meyer, M. (2000b), Patent citations in a novel field of technology - What can they tell about interactions between emerging communities of science and technology? Scientometrics, Vol. 48(2), P151-178.
    34.Meyer, M. (2006), Measuring science-technology interaction in the knowledge-driven economy: The case of a small economy, Scientometrics, Vol. 66(2), P425-439.
    35.Mina, A., Ramlogan, R., Tampubolon, G., Metcalfe, J. S. (2007), Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge, Research Policy, Vol. 36(5), P789-806.
    36.Narin, F., Olivastro, D. (1992), Status Report: Linkage Between Technology and Science,Research Policy, Vol. 21, P237-249.
    37.Narin, F. (1994), Patent Bibliometrics, Scientometrics, Vol. 30(1), P147-155.
    38.Narin, F., Hamilton, K. S., Olivastro, D. (1997), The increasing linkage between US technology and public science, Research Policy, Vol. 26(3), P317-330.
    39.Nooy, W., Mrvar, A., Batagelj, V. (2005), Exploratory social network analysis with Pajek, Cambridge University Press, New York.
    40.Padhi, A. K., Nanjundaswamy, K. S., Goodenough, J. B. (1997),Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, Journal of the Electrochemical Society, Vol. 144(4), P1188-1194.
    41.Park, K. S., Son, J. T., Chung, H. T., Kim, S. J., Lee, C. H., Kim, H. G. (2003),Synthesis of LiFePO4 by co-precipitation and microwave heating,Electrochemistry Communications, Vol. 5(10), P839-842.
    42.Pavitt, K., Soete, L. (1980), Innovation activities and export shares: Some comparisons between industries and countries, In: K. PAVITT (Ed.), Technical Innovation and British Economic Performance,Macmillan, London.
    43.Price, D. D. J. (1965),Is technology historically independent of science?Technology and Culture, Vol. 6(4), P553-568.
    44.Prosini, P. P., Carewska, M., Scaccia, S., Wisniewski, P., Passerini, S., Pasquali, M. (2002), A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance, Journal of the Electrochemical Society, Vol. 149(7), PA886-A890.
    45.Rip, A. (1992), Science and Technology as Dancing Partners. in Kroes, P., Bakker, M. (eds.), Technological Development and Science in the Industrial Age, Netherlands: Klumer Academic Publishers, P231-270.
    46.Rosenberg, N., Birdzell, L. E. (1990), Science, technology and the western miracle,Scientific American, Vol. 263(5), P42-54.
    47.Sanchez, M. A. E., Brito, G. E. S., Fantini, M. C. A., Goya, G. F., Matos, J. R. (2006), Synthesis and characterization of LiFePO4 prepared by sol-gel technique, Solid State Ionics, Vol. 177(5-6), P497-500.
    48.Sides, C. R., Croce, F., Young, V. Y., Martin, C. R., Scrosati, B. (2005), A high-rate, nanocomposite LiFePO4/carbon cathode, Electrochemical and Solid State Letters, Vol. 8(9), PA484-A487.
    49.Tijssen, R. J. W., Buter, R. K., van Leeuwen, T. N. (2000), Technological relevance of science: An assessment of citation linkages between patents and research papers, Scientometrics, Vol. 47(2), P389-412.
    50.Toynbee, A. J. (1962). A Study of History, Volume 1:Introduction: The Geneses of Civilizations, 1st ed., NY: Oxford University Press.
    51.Turney, J. (1991). What drives the engines of innovation? New Scientist, P40.
    52.Van Looy, B., Debackere, K., Callaert, J., Tijssen, R., van Leeuwen, T. (2006),Scientific capabilities and technological performance of national innovation systems: An exploration of emerging industrial relevant research domains. Scientometrics, Vol. 66(2), P295-310.
    53.Verbeek, A., Debackere, K., Luwel, M., Andries, P., Zimmermann, E., Deleus, F. (2002), Linking science to technology: Using bibliographic references in patents to build linkage schemes, Scientometrics, Vol. 54(3), P399-420.
    54.Verspagen, B. (2007), Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research, Advances in Complex Systems, Vol. 10(1), P93-115.
    55.Wang, G. X., Bewlay, S. L., Konstantinov, K., Liu, H. K., Dou, S. X., Ahn, J. H. (2004), Physical and electrochemical properties of doped lithium iron phosphate electrodes, Electrochimica Acta, Vol. 50(2-3), P443-447.
    56.Xia, Y. G., Yoshio, M., Noguchi, H. (2006), Improved electrochemical performance of LiFePO4 by increasing its specific surface area, Electrochimica Acta, Vol. 52(1), P240-245.
    57.Yang, S. F., Zavalij, P. Y., Whittingham, M. S. (2001), Hydrothermal synthesis of lithium iron phosphate cathodes, Electrochemistry Communications, Vol. 3(9),P505-508.
    58.Zaghib, K., Charest, P., Guerfi, A., Shim, J., Perrier, M., Striebel, K. (2004), Safe Li-ion polymer batteries for HEV applications, Journal of Power Sources,Vol. 134(1), P124-129.

    QR CODE