簡易檢索 / 詳目顯示

研究生: 林恒宇
Heng-Yu Lin
論文名稱: 再生二氧化矽應用於丁腈橡膠之物性研究
The performance and application of regenerate silica for NBR
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 邱智瑋
Chih-Wei Chiu
游進陽
Chin-Yang Yu
吳昌謀
Chang-Mou Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 80
中文關鍵詞: 二氧化矽丁腈橡膠粒徑硫化循環經濟
外文關鍵詞: silica, NBR, particle size, Vulcanization, Circular Economy
相關次數: 點閱:283下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在循環經濟當道的情況下,以往太陽能及矽晶圓產業於生產過程中產生之廢砂漿僅能就地掩埋,但現今透過再生的工法,使廢砂漿還原成再生二氧化矽,不僅解決了環境汙染的問題,同時賦予廢砂漿具有新生命。本研究之目標於建立再生二氧化矽之最佳化材料參數,透過將再生二氧化矽應用於丁腈橡膠(NBR)中,並以市售最為泛用之二氧化矽,立安東化工股份有限公司製造之Tokusil-255作為對照,尋找再生二氧化矽之最佳化材料參數。
實驗部分首先鑑定再生二氧化矽及市售二氧化矽之差異,透過掃描式電子顯微鏡(SEM)、能量散射光譜儀(EDS)、穿透式電子顯微鏡(TEM)等來觀察粒子之聚集型態及元素分析,再透過化學性質分析比較再生二氧化矽及市售二氧化矽之材料參數,如含水率、酸鹼度、比表面積、粒徑大小、振實密度等,之後再將再生二氧化矽及市售二氧化矽分別添加至丁腈橡膠中,測試硫化橡膠之物理性質之差異,並試圖由硫化橡膠之物理性質歸納出再生二氧化矽之最佳化材料參數。
由實驗得知再生二氧化矽含水率小於5%、酸鹼度維持中性、粒子團聚現象較小且平均粒徑D90小於1.8微米(越小越好)。當以上條件皆達成時,再生二氧化矽應用於丁腈橡膠中,將具有與市面上泛用Tokusil-255二氧化矽有相近之補強作用。


Circular economy (CE) is currently a popular concept promoted by the EU, by several national governments and by many businesses around the world. In traditional way, the pollution of silicon wafer cutting slurry is disposed of in a landfill. Nowadays, there’s a green treatment to give silicon wafer cutting slurry a new life. Using a chemical method to purify silicon wafer cutting slurry, the “Generate silica” comes out.
This study is to find the best material parameters of regenerate silica. Therefore, a commercial silica, Tokusil-255, from Oriental Silicas Corporation, is used as control. Through comparing the different material parameters of commercial silica and regenerate silica, we try to find the best material parameters of regenerate silica for NBR.
Experimentally, at first, we identify the particle size and elemental composition of commercial silica and regenerate silica in SEM, EDS, TEM. Secondly, we compare to the properties such as water content, pH, BET, particle size, bulk density. At last, we add both silica into NBR and compare the mechanical properties of vulcanizates. From the experiments above, we try to generalize the best material parameters of regenerate silica for NBR.
According to experiment, we find best material parameters of regenerate silica for NBR as follows: Water content<5%, pH remain Neutral, particle size D90<1.8um (the smaller, the better). When all the conditions meet, the mechanical properties of generate silica are closed to commercial silica, Tokusil-255.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 第二章 文獻回顧 3 2.1 二氧化矽 3 2.2 丁腈橡膠 5 2.2.1 生產方式 5 2.2.2 結構 7 2.2.3 應用 9 2.3 碳黑 10 2.4 橡膠硫化概述 11 2.4.1 橡膠硫化歷史 11 2.4.2 橡膠硫化體系 12 第三章 實驗部分 16 3.1 實驗架構 16 3.2 材料及配方 17 3.2.1 使用材料及配方 17 3.3 試驗方法與步驟 22 3.3.1 形態學分析 22 3.3.2 熱重量損失分析 25 3.3.3 化學性質分析 26 3.3.4 硫化膠製備 32 3.3.5 硫化試驗 35 3.3.6 機械性質分析 36 3.3.7 常見性質分析 41 第四章 結果與討論 42 4.1 原料鑑定 42 4.1.1 粒徑分析 42 4.1.2 元素分析 44 4.1.3 熱重分析 46 4.1.4 化學性質分析 47 4.1.5 硫化曲線 49 4.2 機械性質分析 52 4.2.1 硬度試驗 52 4.2.2 拉伸強度及伸長率試驗 54 4.2.3 熱老化試驗 57 4.2.4 壓縮永久變形試驗 59 4.3 常用性質分析 61 4.3.1 摩擦係數 61 4.3.2 絕緣破壞強度 63 第五章 結論 64 第六章 參考文獻 65

[1] M. S. Andersen, "An introductory note on the environmental economics of the circular economy," Sustainability Science, journal article vol. 2, no. 1, pp. 133-140, April 01 2007.
[2] H. Frank, C. Maximilian, M. Jürgen, and F. Michael, "Silica-Based Mesoporous Organic–Inorganic Hybrid Materials," Angewandte Chemie International Edition, vol. 45, no. 20, pp. 3216-3251, 2006.
[3] J. Y. Ko, K. Prakashan, and J. K. Kim, "New silane coupling agents for silica tire tread compounds," Journal of Elastomers & Plastics, vol. 44, no. 6, pp. 549-562, 2012.
[4] L. A. E. M. Reuvekamp, J. W. t. Brinke, P. J. v. Swaaij, and J. W. M. Noordermeer, "Effects of Time and Temperature on the Reaction of Tespt Silane Coupling Agent During Mixing with Silica Filler and Tire Rubber," Rubber Chemistry and Technology, vol. 75, no. 2, pp. 187-198, 2002.
[5] C. Sung-Seen, P. Byung-Ho, and S. Hanjong, "Influence of filler type and content on properties of styrene-butadiene rubber (SBR) compound reinforced with carbon black or silica," Polymers for Advanced Technologies, vol. 15, no. 3, pp. 122-127, 2004.
[6] S. S. Sarkawi, W. K. Dierkes, and J. W. M. Noordermeer, "MORPHOLOGY OF SILICA-REINFORCED NATURAL RUBBER: THE EFFECT OF SILANE COUPLING AGENT," Rubber Chemistry and Technology, vol. 88, no. 3, pp. 359-372, 2015.
[7] Y. Y. Law, D. L. Feke, and I. Manas-Zloczower, "THERMOGRAVIMETRIC ANALYSIS OF THE KINETICS OF BOUND-RUBBER FORMATION ON SURFACE-MODIFIED SILICA," Rubber Chemistry and Technology, vol. 87, no. 2, pp. 311-319, 2014.
[8] M. L. Kralevich and J. L. Koenig, "FTIR Analysis of Silica-Filled Natural Rubber," Rubber Chemistry and Technology, vol. 71, no. 2, pp. 300-309, 1998.
[9] D. Julve, M. Menéndez, J. Pérez, and J. Ramos, "MICRODISPERSION OF SILICA IN TIRE TREAD COMPOUNDS ABOVE THE PERCOLATION THRESHOLD BY TEM IMAGE MEASUREMENTS," Rubber Chemistry and Technology, vol. 84, no. 1, pp. 74-87, 2011.
[10] D. C. Edwards and K. Sato, "Interaction of Silica with Functionalized SBR," Rubber Chemistry and Technology, vol. 53, no. 1, pp. 66-79, 1980.
[11] R. A. Bakar, R. Yahya, and S. N. Gan, "CROSS-LINKING REACTIONS OF SILICA-FILLED EPOXIDIZED NATURAL RUBBER WITH FUMARIC ACID," Rubber Chemistry and Technology, vol. 89, no. 3, pp. 465-476, 2016.
[12] M. Alimardani, M. Razzaghi-Kashani, R. Karimi, and A. Mahtabani, "CONTRIBUTION OF MECHANICAL ENGAGEMENT AND ENERGETIC INTERACTION IN REINFORCEMENT OF SBR-SILANE–TREATED SILICA COMPOSITES," Rubber Chemistry and Technology, vol. 89, no. 2, pp. 292-305, 2016.
[13] S. R. Vaikuntam, E. S. Bhagavatheswaran, K. W. Stöckelhuber, S. Wießner, G. Heinrich, and A. Das, "DEVELOPMENT OF HIGH PERFORMANCE RUBBER COMPOSITES FROM ALKOXIDE-BASED SILICA AND SOLUTION STYRENE–BUTADIENE RUBBER," Rubber Chemistry and Technology, vol. 90, no. 3, pp. 467-486, 2017.
[14] Y.-C. Tao, B. Dong, L.-Q. Zhang, and Y.-P. Wu, "REACTIONS OF SILICA–SILANE RUBBER AND PROPERTIES OF SILANE–SILICA/SOLUTION-POLYMERIZED STYRENE–BUTADIENE RUBBER COMPOSITE," Rubber Chemistry and Technology, vol. 89, no. 3, pp. 526-539, 2016.
[15] S.-R. Ryu, J.-M. Lee, and D.-J. Lee, "EFFECTS OF SURFACE TREATMENTS AND SILICA SIZE ON MECHANICAL PROPERTIES OF SILICA-REINFORCED ELASTOMERIC COMPOSITES," Rubber Chemistry and Technology, vol. 87, no. 2, pp. 264-275, 2014.
[16] W. Kaewsakul, K. Sahakaro, W. K. Dierkes, and J. W. M. Noordermeer, "OPTIMIZATION OF RUBBER FORMULATION FOR SILICA-REINFORCED NATURAL RUBBER COMPOUNDS," Rubber Chemistry and Technology, vol. 86, no. 2, pp. 313-329, 2013.
[17] M. V. Braum and M. A. M. Jacobi, "SILICA GRAFTED WITH EPOXIDIZED LIQUID POLYBUTADIENES: ITS BEHAVIOR AS FILLER FOR TIRE TREAD COMPOUNDS," Rubber Chemistry and Technology, vol. 90, no. 1, pp. 173-194, 2017.
[18] K. Reinhardt and W. Kern, Handbook of Silicon Wafer Cleaning Technology. Elsevier Science, 2008.
[19] D. Zhao et al., "Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores," Science, vol. 279, no. 5350, pp. 548-552, 1998.
[20] G. S. Attard, J. C. Glyde, and C. G. Göltner, "Liquid-crystalline phases as templates for the synthesis of mesoporous silica," Nature, vol. 378, p. 366, 11/23/online 1995.
[21] N. Hewitt and P. Ciullo, Compounding Precipitated Silica in Elastomers: Theory and Practice. Elsevier Science, 2007.
[22] J. Shin, J. Park, and N. Park, "A method to recycle silicon wafer from end-of-life photovoltaic module and solar panels by using recycled silicon wafers," Solar Energy Materials and Solar Cells, vol. 162, pp. 1-6, 2017/04/01/ 2017.
[23] 肖瑞, 魏海洋, 张霖, 李彤霞, 甘. 兰州石化公司研究院, 730060, and 甘. 兰州石化公司乙烯厂, 730060, "丁腈橡胶研究进展," (in 簡體中文), 杭州化工, no. 2012年 02, pp. 8-10+26, 2012.
[24] Q. Wang et al., "Ultrafine full-vulcanized powdered rubbers/PVC compounds with higher toughness and higher heat resistance," Polymer, vol. 46, no. 24, pp. 10614-10617, 2005/11/21/ 2005.
[25] V. Jovanović, S. Samaržija-Jovanović, J. Budinski-Simendić, G. Marković, and M. Marinović-Cincović, "Composites based on carbon black reinforced NBR/EPDM rubber blends," Composites Part B: Engineering, vol. 45, no. 1, pp. 333-340, 2013/02/01/ 2013.
[26] J. B. Donnet, Carbon Black: Science and Technology, Second Edition. Taylor & Francis, 1993.
[27] A. I. Medalia, "Effect of Carbon Black on Dynamic Properties of Rubber Vulcanizates," Rubber Chemistry and Technology, vol. 51, no. 3, pp. 437-523, 1978.
[28] R. N. Datta, Rubber Curing Systems. Rapra Technology, 2002.
[29] H. Ismail and H. H. Chia, "The effects of multifunctional additivand vulcanization systems on silica filled epoxidized natural rubber compounds," European Polymer Journal, vol. 34, no. 12, pp. 1857-1863, 1998/12/01/ 1998.
[30] P. W. Hawkes and L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis. Springer Berlin Heidelberg, 2013.
[31] A. Khursheed, Scanning Electron Microscope Optics and Spectrometers. World Scientific, 2011.
[32] J. C. Russ, M. A. Frs, R. Kiessling, and J. Charles, Fundamentals of Energy Dispersive X-Ray Analysis: Butterworths Monographs in Materials. Elsevier Science, 2013.
[33] D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (no. 第 2 卷). Springer, 2009.
[34] J. Ayache, L. Beaunier, J. Boumendil, G. Ehret, and D. Laub, Sample Preparation Handbook for Transmission Electron Microscopy: Methodology. Springer New York, 2010.
[35] B. Wunderlich, Thermal Analysis of Polymeric Materials. Springer, 2005.
[36] A. Aventurin, Specific Surface Area, Langmuir, BET. GRIN Publishing, 2014.
[37] N. G. Stanley-Wood and R. W. Lines, Particle Size Analysis. Royal Society of Chemistry, 2007.
[38] U. Teipel, Energetic Materials: Particle Processing and Characterization. Wiley, 2006.
[39] H. Y. D. Saw, Clive E2; Paterson, Anthony HJ3; Jones, Jim R4, "The influence of particle size distribution and tapping on the bulk density of milled lactose powders," Chemeca 2013: Challenging Tomorrow pp. 299-303, 2013.
[40] M. Yuji et al., "Crosslinking and mechanical property of liquid rubber. I. Curative effect of aliphatic diols," Journal of Applied Polymer Science, vol. 22, no. 7, pp. 1817-1844, 1978.
[41] L. Mullins and N. R. Tobin, "Theoretical Model for the Elastic Behavior of Filler-Reinforced Vulcanized Rubbers," Rubber Chemistry and Technology, vol. 30, no. 2, pp. 555-571, 1957.
[42] C. Sung-Seen, "Influence of the silica content on rheological behaviour and cure characteristics of silica-filled styrene–butadiene rubber compounds," Polymer International, vol. 50, no. 5, pp. 524-530, 2001.
[43] R. P. Brown and A. Soekarnein, "An investigation of the reproducibility of rubber hardness tests," Polymer Testing, vol. 10, no. 2, pp. 117-137, 1991/01/01/ 1991.
[44] H. Ismail, R. Nordin, and A. M. Noor, "Cure characteristics, tensile properties and swelling behaviour of recycled rubber powder-filled natural rubber compounds," Polymer Testing, vol. 21, no. 5, pp. 565-569, 2002/01/01/ 2002.
[45] D. R. Bauer, J. M. Baldwin, and K. R. Ellwood, "Rubber aging in tires. Part 2: Accelerated oven aging tests," Polymer Degradation and Stability, vol. 92, no. 1, pp. 110-117, 2007/01/01/ 2007.
[46] S. S. Choe, "Influence of Thermal Aging in Change of Crosslink Density and Deformation of Natural Rubber Vulcanizates," Bulletin of the Korean Chemical Society, vol. 21, no. 6, pp. 628-634, 2000.
[47] B. N. J. Persson, "Theory of rubber friction and contact mechanics," The Journal of Chemical Physics, vol. 115, no. 8, pp. 3840-3861, 2001.
[48] M.-R. Pourhossaini and M. Razzaghi-Kashani, "Effect of silica particle size on chain dynamics and frictional properties of styrene butadiene rubber nano and micro composites," Polymer, vol. 55, no. 9, pp. 2279-2284, 2014/04/25/ 2014.
[49] K. W. Stöckelhuber, A. S. Svistkov, A. G. Pelevin, and G. Heinrich, "Impact of Filler Surface Modification on Large Scale Mechanics of Styrene Butadiene/Silica Rubber Composites," Macromolecules, vol. 44, no. 11, pp. 4366-4381, 2011/06/14 2011.

QR CODE