簡易檢索 / 詳目顯示

研究生: 邱友亮
You-Liang Ciou
論文名稱: 寬鎖頻除四注入鎖定除頻器與雙頻同時振盪除二注入鎖定除頻器設計
Design of Wide Locking Range Divide-By-4 and Concurrent Oscillating Divide-By-2 Injection-Locked Frequency Dividers
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 莊敏宏
Miin-Horng Juang
徐世祥
Shih-Hsiang Hsu
徐敬文
Ching-Wen Hsue
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 154
中文關鍵詞: 注入鎖定除頻器
外文關鍵詞: Injection-locked Frequency Divider
相關次數: 點閱:280下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇論文提出四種不同架構的注入鎖定除頻器,分別為使用線性混波技術的三共振RLC共振腔除四注入鎖定除頻器、雙頻同時振盪的除二注入鎖定除頻器、使用電流再利用架構的除四注入鎖定除頻器及使用電流再利用架構的除八注入鎖定除頻器,並全部實現於台積電(TSMC) 0.18 μm製程。
首先,提出一個使用線性混波技術的三共振RLC共振腔除四注入鎖定除頻器,並由台積電(TSMC) 0.18 μm製程實現。因為三共振RLC共振腔及重疊的除頻範圍,使此除四除頻器設計有著較寬的除頻範圍。當工作偏壓在1伏特、注入強度為0 dBm時,注入鎖定訊號範圍為8.4 GHz ~ 13.5 GHz,百分比為46.58 %。此除頻器核心功率消耗為9.86毫瓦,晶片面積為0.985 × 0.836 mm2。
其次,提出一個雙頻同時振盪的除二注入鎖定除頻器,並由台積電(TSMC) 0.18 μm製程實現。此除頻器由兩組分別操作在3.7 GHz和5.1 GHz的子除頻器組成。透過控制供應電壓,使除頻器操作在高頻段、低頻段及同時發生雙頻段模式。此除頻器有效瞭解多共振LC注入鎖定除頻器的操作模式。在寬鎖頻下的品質因子為27.96,注入強度為0 dBm時的注入鎖定訊號範圍為5.63 GHz ~ 11.89 GHz,百分比為71.46 %,核心功率消耗為2.556毫瓦。在低功耗下的品質因子為48.8,注入強度為0 dBm時的注入鎖定訊號範圍為5.71 GHz ~ 7.95 GHz,百分比為32.8 %,核心功率消耗為0.672毫瓦。此晶片面積為0.65 × 1.023 mm2。
接著,提出一個使用電流再利用架構的除四注入鎖定除頻器,並由台積電(TSMC) 0.18 μm製程實現。此除四除頻器架構概念是利用一組除二N型金氧半場效電晶體交互式耦合除頻器工作後,將輸出訊號拉至另一組除二N型金氧半場效電晶體交互式除頻器來有效提升除頻範圍。在當工作偏壓在1.6伏特、注入強度為0 dBm時,注入鎖定訊號範圍為9.82 GHz ~ 16.69 GHz,百分比為51.83 %。此除頻器核心功率消耗為16.288毫瓦,晶片面積為0.644 × 0.91 mm2。
最後,提出一個使用電流再利用架構的除八注入鎖定除頻器,並由台積電(TSMC) 0.18 μm製程實現。此除四除頻器架構概念是利用一組除四N型金氧半場效電晶體交互式耦合除頻器工作後,將輸出訊號拉至另一組除二P型金氧半場效電晶體交互式除頻器來有效提升除頻範圍。在當工作偏壓在1.7伏特、注入強度為0 dBm時,注入鎖定訊號範圍為16.83 GHz ~ 17.94 GHz,百分比為6.385 %。此除頻器核心功率消耗為9.537毫瓦,晶片面積為0.931 × 1.2 mm2。


In this thesis, four different varieties of injection-locked frequency divider (ILFD): triple-resonance RLC-resonator divide-by-4 ILFD, concurrent oscillating divide-by-2 ILFD, current-reused divide-by-4 LC ILFD and current-reused divide-by-8 LC ILFD.
First, a triple-resonance RLC-resonator divide-by-4 injection-locked frequency divider (ILFD) in the 0.18 μm CMOS process is presented. The locking range of conventional single-stage divide-by-4 LC-tank ILFD is limited due to using harmonic mixer with small frequency conversion gain. The studied linear mixer divide-by-4 ILFDs have wide locking range because of triple-resonance RLC resonator and overlapping locking ranges. At the drain-source bias of 1 V and at the incident power of 0 dBm, the locking range of the triple-resonance ILFD is 5.1 GHz (46.58 %) from 8.4 to 13.5 GHz. The core power consumption is 9.86 mW and the total area including the output buffer and the pads is 0.985 × 0.836 mm2.
Next, a concurrent oscillating divide-by-2 injection-locked frequency divider (ILFD) in the 0.18 μm CMOS process is presented. The ILFD consists of two capacitive cross-coupled sub-ILFDs operate at 3.7 GHz and 5.1 GHz respectively. The two sub-ILFDs are coupled by a pair of MIM capacitors. By controlling the gate voltages of the switching transistors, the ILFD has three different operational modes, high-band dominant mode, low-band dominant mode and concurrent oscillation mode. In the concurrent mode, the free-running ILFD can generate differential signals at 3.7 GHz, 5.1 GHz and their harmonics and other cross-modulation products. At the injection power mode, the locked ILFD outputs only the fundamental and harmonics. At low-injection power mode, the ILFD outputs concurrent oscillating signals in addition to the locked fundamental. The wide-locking-mode figure of merit (FOM) of the ILFD is 27.96 with wide locking range 6.26 GHz from 5.63 to 11.89 GHz. The power consumption is 2.556 mW and the input power is 0 dBm. The low-power-mode figure of merit (FOM) of the ILFD is 48.8 with wide locking range 2.24 GHz from 5.71 to 7.95 GHz. The power consumption is 0.67 mW and the input power is 0 dBm.
After that, a current-reused divide-by-4 LC injection-locked frequency divider (ILFD) implemented in the TSMC 0.18 μm 1P6M CMOS process is proposed. Conventional harmonic mixer divide-by-4 ILFD has limited locking range, and this thesis shows a wide locking range divide-by-4 LC ILFD designed with one linear mixer divide-by-2 n-core cross-coupled ILFD stacked on the top of the other linear mixer divide-by-2 n-core cross-coupled ILFD. At the supply of 1.6 V and at the incident power of 0 dBm, the locking range is 6.87 GHz (51.83 %) from 9.82 to 16.69 GHz. Low power mode is also measured. The free-running oscillation frequency is 3.75 GHz. The core power consumption is 16.288 mW and the die area is 0.644 ×0.91 mm2.
Eventually, a current-reused divide-by-8 LC injection-locked frequency divider (ILFD) designed in the TSMC 0.18 μm CMOS process is proposed. The proposed current-reused ILFD is based on a ÷2 p-core LC ILFD stacking on a ÷4 n-core capacitive cross-coupled LC ILFD. Injection MOSFETS in both ÷2 and ÷4 ILFDs are used as linear mixers. At the supply of 1.7 V and at the incident power of 0 dBm, the locking range is 1.11 GHz (6.385 %), from the incident frequency 16.83 GHz to 17.94 GHz. The core power consumption is 9.537 mW and the die area is 0.931 × 1.2 mm2.

中文摘要 Abstract 誌謝 Table of Contents List of Figures List of Tables Table of Contents Chapter 1 Introduction 1.1 Background 1.2 Thesis Organization Chapter 2 Overviews of Oscillators 2.1 Introduction 2.2 The Oscillators Theory 2.2.1 Feedback Oscillators 2.2.2 Negative Resistance Oscillators 2.3 The Classification of Oscillators 2.3.1 Ring Oscillator 2.3.2 LC-Tank Oscillator Chapter 3 Overviews of Injection-Locked Frequency Divider 3.1 Introduction 3.2 Principle of Injection-Locked Frequency Divider 3.3 Injection-Locked Topology 3.4 The Parameters of Injection-Locked Frequency Divider 3.4.1 Locking Range [GHz] 3.4.2 Phase Noise [dBc/Hz] 3.4.3 Figure of Merit 3.5 Passive Components Design in ILFD 3.5.1 Resistor Design 3.5.2 Inductor Design 3.5.3 Transformer Design 3.5.4 Capacitor Design 3.5.5 Varactor Design 3.6 Quality Factor Chapter 4 Wide-Band Triple-Resonance Divide-by-4 Injection-Locked Frequency Divider 4.1 Introduction 4.2 Circuit Design 4.3 Measurement Results 4.4 Conclusion Chapter 5 Concurrent Oscillating Divide-by-2 LC Injection-Locked Frequency Divider 5.1 Introduction 5.2 Circuit Design 5.3 Measurement Results 5.4 Conclusion Chapter 6 Divide-by-4 LC Injection-Locked Frequency Divider Using Stacked 2:1 n-core ILFDs 6.1 Introduction 6.2 Circuit Design 6.3 Measurement Results 6.4 Conclusion Chapter 7 Current-Reuse LC Divide-by-8 Injection-Locked Frequency Divider 7.1 Introduction 7.2 Circuit Design 7.3 Measurement Results 7.4 Conclusion References

[1]B. Razavi, “RF Microelectronics,” Prentice Hall PTR, 1998
[2]N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.
[3]S. Smith, “Microelectronic Circuit 4th edition,” Oxford University Press 1998.
[4]J. Roggers, C. Plett, “Radio frequency integrated circuit design,” Artech House, 2003.
[5]B. Razavi, “Design of Analog CMOS Integrated Crcuits,” MC Graw Hall, 2001.
[6]J. Craninckx, and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
[7]Q. Huang, and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
[8]J. Lee, and B. Razavi, “A 40 GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
[9]H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[10]H. D. Wohlmuth, and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
[11]M. Tiebout, “A 480 uW 2 GHz ultra-low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System, vol. 5, pp. 741-744, May 2000.
[12]H. Wu, A. Hajimiri, “A 19 GHz 0.5 mW 0.35 spl mu/m CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech., pp. 412-413, Feb. 2001.
[13]H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
[14]R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
[15]P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
[16]H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[17]W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
[18]H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 m CMOS frequency divider with shunt-peaking locking-range enhancement,” ISSCC Digest of Tech. Papers. pp. 412-413, February 2001.
[19]M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 1170-1174, July 2004.
[20]H. R. Rategh, H. Samavati, and T. H. Lee, “A 5 GHz, 1 mW CMOS voltage controlled differential injection locked frequency divider,” Custom Integrated Circuits Conference, pp. 517-520, May 1999.
[21]K. Yamamoto, T. Norimatsu, and M. Fujishima, “High-speed and wide-tuning-range LC frequency dividers,” IEEE ISCAS 2004, pp. 361-364, 2004.
[22]H. Wu, “Signal generation and processing in high-frequency/high-speed silicon based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
[23]R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp. 1380-1385, Oct. 1973.
[24]S. Verma, H. R. Rategh, and T. H. Lee, “A unified model for injection-locked frequency dividers,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 1015-1027, 2003.
[25]S. Kalia, M. Elbadry, B. Sadhu, S. Patnaik, J. Qiu, and R. Harjani, “A simple, unified phase noise model for injection-locked oscillators,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 1-4, May 2011.
[26]J. Lee, and H. Wang, “Study of subharmonically injection-locked PLLs,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 1539-1553, 2009.
[27]B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 1415-1424, 2004.
[28]K.-H. Tsai, L.-C. Cho, J.-H. Wu, and S.-I. Liu, “3.5 mW W-band frequency divider with wide locking range in 90 nm CMOS technology,” IEEE Int. Solid-State Circuits Conf. Tech. Dig., pp. 466-467, Feb. 2008
[29]T.-N. Luo, and Y.-J. E. Chen, “A 0.8-mW 55-GHz dual-injection-locked CMOS frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp. 620-625, Mar. 2008.
[30]Y.-H. Kuo, J.-H. Tsai, H.-Y. Chang, and T.-W. Huang, “Design and analysis of a 77.3% locking-range divide-by-4 frequency divider,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 10, pp. 2477-2485, Oct. 2011.
[31]Y. K. Koutsoyannopoulos, and Y. Papananos, “Systematic analysis and modeling of integrated inductors and transformers in RF IC design,” IEEE Trans. Crcuits and System-II, vol. 47, no. 8, pp. 699-713, 2000.
[32]A. Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, 2001.
[33]H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, June 1974.
[34]B. De Muer, M. Borremans, M. Steyaert, and G. Li. Puma, “A 2GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, 2000.
[35]P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[36]T. H. Lee, “The Design of CMOS Radio Frequency Integrated Circuits,” Cambridge University Press 1998.
[37]L. Wu, and H. C. Luong, “Analysis and design of a 0.6 V 2.2 mW 58.5-to-72.9 GHz divide-by-4 injection-locked frequency divider with harmonic boosting,” IEEE Trans. Circuits and Systems-Part I, Regular Papers, vol. 60, no. 8, pp. 2001-2007, Aug. 2013.
[38]Y.-H. Kuo, J.-H. Tsai, H.-Y. Chang, T.-W. Huang, “Design and analysis of a 77.3% locking-range divide-by-4 frequency divider,” IEEE Trans. Microwave Theory and Techniques, vol. 59, no. 10, pp. 2477-2485, Oct. 2011.
[39]S. H. Lee, S. L. Jang, and Y. H. Chung, “A low voltage divide-by-4injection locked frequency divider with quadrature outputs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 373-375, May 2007.
[40]K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injection locked divider,” in IEEE Int. Solid-State Circuits Conf. Dig., pp. 2472-2481, Feb. 2006.
[41]S.-L. Jang, C.-H. Liu, C.-W. Chang, and M.-H. Juang, “A low voltage, low power divide-by-4 LC-tank injection-locked frequency divider,” Int. J. Electronics., vol. 98, no. 4, pp. 521-527, April 2011.
[42]S.-L. Jang,Y.–T. Chang, C.-W. Hsue and M.-H. Juang, “Wide-locking range divide-by-4 injection-locked frequency divider using injection MOSFET DC-biased above threshold region,” J. Circuit Theory and Applications, vol. 44, no. 5, pp.968–976, May 2016.
[43]S.-L. Jang, C. C. Liu and C.-W. Chung, “A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 236-238, April 2009.
[44]S.-L. Jang, T.-C. Kung and C.-W. Hsue, “Wide-locking range divide-by-4 injection-locked frequency divider using linear mixer Approach,” IEEE Microw. Wireless Compon. Lett., in press 2017.
[45]S.-L. Jang, and C.-C. Fu., “Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers,” Analog Integr Circ Sig Process, vol. 78, no. 2, pp. 523-528, Feb. 2014.
[46]C.-W. Chang, S.-L. Jang, and M.-H. Juang, “Divide-by-4 injection-locked frequency divider using two linear mixers,” Microw. Opt. Technol. Lett., pp.1359-1362, June 2012.
[47]J.-W. Wu, T.-H. Lin, H.-W. Kao, “Divide-by-four injection-locked frequency divider by using sub-harmonics mixer,” IEEE MTT-S Int., Microwave Symposium Digest (MTT), pp.1-3, June 2013.
[48]S.-L. Jang, and W.-C. Liu, “Injection-locked frequency divider using single-injected dual-injection MOSFETs,” Microelectronics Journal, vol. 46, no. 12, pp. 1409-1412, Dec. 2015.
[49]S.-L. Jang, W.-C. Lai, W.-C. Lai, and M.-H. Juang, “Wide-band divide-by-4 injection-locked frequency divider using RLC resonator and capacitive cross-coupled oscillator,” IEEE IWS2016, pp.1-4, Mar. 2016.
[50]S.-L. Jang and C.-H. Fang, “Divide-by-4 capacitive cross-coupled injection-locked frequency dividers,” Analog Integr. Circ. Sig. Process, vol. 86, no. 1, pp. 59-63, Jan. 2016.
[51]S.-L. Jang, C.-C. Shih, C.-C. Liu, and M.-H. Juang, “CMOS injection-locked frequency divider with two series-LC resonators,” Microw. Opt. Technol. Lett., pp.290-293, Feb. 2011.
[52]Y.-K. Jang, C.-W. W., J.-F. Chang, and C.-C. Liu, “A 90nm CMOS dual-band divide-by-2 and -4 Injection-locked frequency divider,” Microw. Opt. Technol. Lett., vol. 52, no. 6, pp.1421-1425, 2010.
[53]S.-L. Jang, T.-C. Kung, and C.-W. Hsue, “Wide-locking range divide-by-4 injection-locked frequency divider using linear mixer Approach,” IEEE Microw. Wireless Compon. Lett., in press 2017.
[54]S.-L. Jang, Y.-J. Chen, C.-H. Fang, and W. C. Lai, “Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electronics Lett., vol. 51, no. 23, pp. 1888-1889, Nov. 2015.
[55]S.-L. Jang, W.-C. Cheng, and C.-W. Hsue, “A triple-resonance RLC-tank divide-by-2 injection-Locked frequency divider,” Electron. Lett., vol. 52, no. 8, pp. 624-626, April 2016.
[56]S.-L. Jang, W.-C. Cheng, and C.-W. Hsue, “Wide-locking range divide-by-3 Iniection-locked frequency divider using 6th-order RLC Resonator,” IEEE Trans. VLSI Syst., vol. 24, no. 7, pp. 2598-2602, July 2016.
[57]S.-L. Jang, X.-Y. Hang, and W.-T. Liu, “Review: capacitive cross-coupled injection-locked frequency dividers,” Analog Integr. Circ. Sig. Process, vol. 88, pp. 97-104, Apr. 2016.
[58]S.-L. Jang, and W.-C. Liu, “Injection-locked frequency divider using single-injected dual-injection MOSFETs,” Microelectronics J., vol. 46, no. 12, pp. 1409-1412, Dec. 2015.
[59]S.-L. Jang, J.-F. Huang, and F.-B. Lin, “Wide-locking range LC-tank divide-by-4 injection-locked frequency divider using transformer feedback,” Int. J. RF and Microwave Computer-Aided Engineering, vol. 25, no. 7, pp. 557-562, July 2015.
[60]Y.-S. Lin, W.-H. Huang, C.-L. Lu, and Y.-H. Wang, “Wide-locking-range multi-phase-outputs regenerative frequency dividers using even-harmonic mixers and CML loop dividers,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 3065-3075, Aug. 2014.
[61]Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee, and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
[62]H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 um CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE ISSCC Dig. Tech., pp. 412-413, Feb. 2001.
[63]C.-W. Chang, S.-L. Jang, C.-W. Huang, and C.-C. Shih, “Dual-resonance LC-tank frequency divider implemented with switched varactor bias,” IEEE international symposium on VLSI design, pp.1-4, 2011.
[64]S.-L. Jang, Z.-H. Wu, C.-W. Hsue, and H.-F. Teng, “Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett., vol. 55, no. 10, pp. 2333-2337, Oct. 2013.
[65]S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J. F. Huang, “Injection-locked frequency divider using injection mixer DC-biased in sub-threshold,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195, Mar. 2015.
[66]S.-L. Jang, “Divide-by-3 injection-locked frequency dividers using dual-resonance resonator,” Analog Integr. Circ. Sig. Process, Vol. 85, no.2, pp 335-341, Nov. 2015.
[67]S.-L. Jang, Y.-J. Chen, C.-H. Fang, and W. C. Lai, “Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electron. Lett., vol. 51, no. 23, pp. 1888-1889, Nov. 2015.
[68]S.-L. Jang, C.-M. Chang, and M.-H. Juang, “Divide-by-2 injection-locked frequency divider implemented with two shunt 4th-order LC resonators,” Analog Integr. Circ. Sig. Process, published online, 2017.
[69]S.-L. Jang, W.-C. Cheng, and C.-W. Hsue, “A triple-resonance RLC-tank divide-by-2 injection-Locked frequency divider,” Electron. Lett., Vol. 52 No. 8 pp. 624-626, 2016.
[70]S.-L. Jang, W.-C. Cheng, and C.-W. Hsue, “Wide-locking range divide-by-3 Injection-locked frequency divider using 6th-order RLC resonator,” IEEE Trans. VLSI Syst., vol. 24, no. 7, pp. 2598-2602, 2016.
[71]A. Li, and H.-C. Luong, “A reconfigurable 4.7–6.6GHz and 8.5–10.7GHz concurrent and dual-band oscillator in 65nm CMOS,” Proc. IEEE Radio Frequency Integrated Circuits Symp., pp.523-526, June 2012.
[72]Z. Safarian, and H. Hashemi, “Wide band multi-mode CMOS VCO design using coupled inductors,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 8, pp. 1830-1843, Aug. 2009.
[73]X. Yu, A. El-Gouhary, and N. M. Neihart, “A transformer-based dual-coupled triple-mode CMOS LC-VCO,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 9, pp. 2059-2070, 2014.
[74]J. Lee, S. Lee, H. Bae, and S. Kim, “A concurrent dual-band VCO with dual resonance in single resonator,” Silicon Monolithic Integrated Circuits in RF Systems, pp. 135-138, Jan. 2007.
[75]S.-L. Jang, X.-Y. Hang, and W.–T. Liu, “Review: capacitive cross-coupled injection-locked frequency dividers,” Analog Integr. Circ. Sig. Process, vol. 88, pp. 97-104, 2016.
[76]S.-L. Jang, F.-B. Lin, and J.-F. Huang, “Wide-band divide-by-2 injection-locked frequency divider using MOSFET mixers DC-biased in subthreshold region,” International Journal of Circuit Theory and Applications, no. 43, pp. 2081-2088, 2015.
[77]S. Lee, S. Jang, and C. Nguyen, “Low-power-consumption wide-locking-range dual-injection-locked 1/2 divider through simultaneous optimization of VCO loaded Q and current,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 10, pp. 3161-3168, 2012.
[78]S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J.-F. Huang, “Injection-locked frequency divider using injection mixer DC-biased in sub-threshold,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 3, pp. 193-195, 2015.
[79]S.-L. Jang, and C.-F. Lee, “A wide locking range LC-tank injection locked frequency divider,” IEEE Microwave Wireless Compon. Lett., vol. 17, pp. 613-615, 2007.
[80]S. H. Lee, S. L. Jang, and Y. H. Chung, “A low voltage divide-by-4 injection locked frequency divider with quadrature outputs,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 5, pp. 373-375, May 2007.
[81]K. Yamamoto, and M. Fujishima, “70 GHz CMOS harmonic injection locked divider,” IEEE Int. Solid-State Circuits Conf. Dig., pp. 2472-2481, Feb. 2006.
[82]S.-L. Jang, C.-H. Liu, C.-W. Chang, and M.-H. Juang, “A low voltage, low power divide-by-4 LC-tank injection-locked frequency divider,” Int. J. Electronics., vol. 98, no. 4, pp. 521-527, Apr. 2011.
[83]S.-L. Jang, Y.–T. Chang, C.-W. Hsue, and M.-H. Juang, “Wide-locking range divide-by-4 injection-locked frequency divider using injection MOSFET DC-biased above threshold region,” Int. J. Circuit Theory and Applications, vol. 44, pp. 968-976, 2016.
[84]S.-L. Jang, C. C. Liu, and C.-W. Chung, “A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 236-238, Apr. 2009.
[85]S.-L. Jang, and C.-H. Fang, “Divide-by-4 capacitive cross-coupled injection-locked frequency dividers,” Analog Integr. Circ. Sig. Process, vol. 86, pp. 59-63, 2016.
[86]S.-L. Jang, and C.-C. Fu., “Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers,” Analog Integr. Circ. Sig. Process, vol. 78, no. 2, pp. 523-528, Feb. 2014.
[87]S.-L. Jang, and W.-C. Liu, “Injection-locked frequency divider using single-injected dual-injection MOSFETs,” Microelectronics Journal, vol. 46, pp. 1409-1412, 2015.
[88]S.-L. Jang, J.-F. Huang, and F.-B. Lin, “wide-locking range LC-tank divide-by-4 injection-locked frequency divider using transformer feedback,” Int. J. RF and Microwave Computer-Aided Engineering, vol. 25, no. 7, pp.557-562, 2015.
[89]C.-W. Chang, and S.-L. Jang, “LC-Tank divide-by-4 injection-locked frequency divider using the 2nd harmonic feedback,” Int. J. Electronics., vol. 101, no. 2, pp. 204-211, 2014.
[90]S.-L. Jang, T.-C. Kung, and C.-W. Hsue, “Wide-locking range divide-by-4 injection-locked frequency divider using linear mixer approach,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 4, pp.398-400, 2017.
[91]S.-L. Jang, Y.-J. Chen, C.-H. Fang, and W. C. Lai, “Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electronics Letters, vol. 51, no. 23, pp. 1888-1889, Nov. 2015.
[92]Y.-S. Lin, W.-H. Huang, C.-L. Lu, and Y.-H. Wang, “Wide-locking-range multi-phase-outputs regenerative frequency dividers using even-harmonic mixers and CML loop dividers,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 3065-3075, Aug. 2014.
[93]Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee, and M.-H. Juang, “A wide locking range and low voltage CMOS direct injectionlocked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
[94]R. Shu, V. Subramanian, and G. Boeck, “A 8:1 static frequency divider operating up to 34 GHz in 0.13- m CMOS technology,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 17-20, Sep. 2011.
[95]S. Cheng, H. Tong, J. S. Martinez, and A. I. Karsilayan, “A fully differential low-power divide-by-8 Injection-locked frequency divider up to 18 GHz,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 583-591, Mar. 2007.
[96]A. Musa, K. Okada, and A. Matsuzawa, “A 20 GHz ILFD with locking range of 31% for divide-by-4 and 15% for divide-by-8 using progressive mixing,” IEEE Asian Solid-State Circuits Conf. Tech. Dig., pp. 85-88, Nov. 2011.
[97]S.-L. Jang, T.-C. Kung, and C.-W. Hsue, “Wide-locking range divide-by-4 injection-locked frequency divider using linear mixer approach,” IIEEE Microw. Wireless Compon. Lett., vol. 27, no. 4, pp. 398-400, Apr. 2017.
[98]H. Hsieh, H. Chen, and L. Lu, “A -band divide-by-4 direct injection locked frequency divider in 0.18-μm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 2, pp. 393-405, Feb. 2011.
[99]A. Musa, K. Okada, and A. Matsuzawa, “Progressive mixing technique to widen the locking range of high division-ratio injection-locked frequency dividers,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 3, pp. 1161-1173, Mar. 2013.
[100]P.-H. Feng, and S.-H. Liu, “A Current-Reused Injection-Locked Frequency Multiplication/Division Circuit in 40-nm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 4, pp. 1523-1532, Apr. 2013.
[101]F. H. Huang, D. M. Lin, H. P. Wang, W. Y. Chiu, and Y. J. Chan, “20 GHz CMOS injection-locked frequency divider with variable division ratio,” IEEE Radio Freq. Integr. Circuits Symp., pp. 469-472, Jun. 2005.

無法下載圖示 全文公開日期 2022/08/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE