簡易檢索 / 詳目顯示

研究生: 游騰進
TENG-CHIN YU
論文名稱: 磁致效應的高響應速及超低溫度係數傳感裝置之研究
The Position Feedback Device with High Response Speed and Low Temperature Coefficient Based on Magnetostrictive Effective
指導教授: 楊宗銘
Chung-Ming Young
口試委員: 陳良瑞
Liang-Rui Chen
鄭世仁
Shih-Jen Cheng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 71
中文關鍵詞: 磁致伸縮
外文關鍵詞: Magnetostriction
相關次數: 點閱:180下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

磁致伸縮效應的基本原理是金屬在不同的磁場變化之下會產生相應的變形而在導波體上傳播彈性波, 藉由此彈性波可獲得位置信息。由於準確性和可靠性的優勢使這種傳感裝置越來越普遍用於各種自動化流程和機械控制元件,例如,線性位置傳感器或液位傳感這些應用都是需要精度高,響應速度快的特性。通常此類型的傳感裝置對於其材質及機構設計的要求相當嚴苛需要精心設計,最大的挑戰是如何減少一定的操作條件下的溫度係數和反應速度。其中訊號波響應的強度,速度,反射波形特徵是主要的研究重點。因應這項研究的材料和磁致伸縮的驅動特性的多樣化, 因此構建了一個高精密定位平台以及基礎特性分析。


Magnetostrictive effect which the magnetostrictive metal will be induced under different magnetic field change and will produce the corresponding strain deformation to propagating an elastic wave, which can be identified the occurrence of magnetic field change at location information. Because the advantages of accuracy and reliability making this sensing devices more and more common used in a variety of automation processes and mechanical control components; for example of the position sensing deviceson motion control or liquid level monitoring requires high accuracy and fast response speed. Usually, the sensing device is dramatically variation by material properties, mechanism design configuration and need be special carefully design; also the most challenge is on how to reduce the temperature coefficient under certain wide operation conditions, to get a consistent accuracy independent of ambient or process temperature change. This research studied diversity of materials and driving characteristics for magnetostrictive sensor and constructed a high-precision positioning platform to analyze all these concerns above, discuss the dependence on wave propagation strength, speed response, reflection and damping by mechanical configuration, signal enhancement and filtering scheme and other features.

CHAPTER 1. INTRODUCTION………………....................1 1.1 Sensor and Transducer ……………….....................1 1.2 Applications of Sensor Technology……….............2 1.3 Motivation………………........................................3 CHAPTER 2. MAGNETOSTRICTION PRINCIPLE……..4 2.1 History and State of the Art on Magnetostrictive Technology……………….....................................4 2.2 Fundamental of Magnetostrictive Technology…...5 2.3 Joule and Wiedemann Effects………....................9 CHAPTER 3. DEVICE DESIGN AND EQUIPMENT………11 3.1 Appearance and Mechanical Structure……..........11 3.2 Design of Electronic Circuits………………........15 3.3 Digital Data Conversion and Data Processing......20 3.3.1 Interrogation and Capture…......................21 3.3.2 Data Average and Filtering….....................22 3.3.3 Position Compensation………...................24 3.4 Experimental Apparatus………............................26 CHAPTER 4. EXPERIMENTS AND DISCUSSION……….31 4.1 Standards and Specifications……..........................31 4.2 Waveguide Material Analysis ……........................36 4.2.1 Material and Energy Analysis .......................37 4.2.2 Heat Treatment ………………......................40 4.3 Structure of Magnetostrictive Component…….…42 4.3.1 Damping ……………….............................45 4.3.2 Stress ………………...................................46 4.4 Magnetic Field Strength and Configuration…..........52 4.5 High Speed of Response Time ……………..............54 CHAPTER 5. CONCLUSIONS AND FUTURE WORK……56 5.1 Conclusions……………….................................56 5.2 Quality and Material Characteristics…..................56 5.3 Mechanical Structure Concern………....................56 5.4 Future Work……………….......................................57 5.3.1 High-Speed Response (10KHz) …..............57 5.3.2 High-Pressure Application (300bar) ……...57 5.4.3 Flexible Application(Up to 20M) ………....58

[1] David S. Nyce ,Linear Position Sensors Theory and Application, A John Wiley & Sons,2004
[2] R. Pallas-Areny and J. G.Webster, Sensors and Signal Conditioning, 2nd ed. New York:Wiley, 2001.
[3] Yoshimitsu Kikuchi, Magnetosrictive Materials and Application, IEEE Transactions on Magnetics,Tohoku University, Sendai, Japan, Jun 1968
[4] N.S.Tzannes, Joule and Wiedemann Effects – The simultaneous generation of longitudinal stress pulses in magnetostrictive materials, IEEE Transactions on sonics and Ultrasonics, vol.SU-13,no.2,July,1966.
[5] Jung-hsiu Pai, The Study of Magnetostrictive Actuator-with-sensing Co-structure System, Feng Chia University, Department of mechanical engineering, 2003
[6] H.W.Katz: solid state magnetic and dielectric device, New York,Wiley,1959.
[7] David K. Cheng, Fundamentals of Engineering Electromagnetics, 2nd ed, Addison Wesley, Reading, mass, 1989.
[8] G., Engdalh, “Handbook of Giant Magnetostrictive Materials”, Academic press, 2000.
[9] Adirek Janwong, Mgnetostriction Measurements in Ni Alloy Single Crystal at Cryogenic Temperatures, Department of Metallurgical Engineering, University of UTAH, May 2008.
[10] R.C. Williams, “Theory of magnetostrictive delay line for pulse and continuous wave transmission” IEEE Trans. on Ultrasonic Engineering, 1959.
[11] B. Jones and C. Liang, “Magnetostriction: revealing the unknown,” IEEE AES System Magazine, March, 1996.
[12] Y. Yamamoto, T. Makino, and H. Matsui, “Micro positioning and Actuation Device Using Giant Magnetostriction Materials,” Proceedings of the 2000 IEEE international Conference on Robotics & Automation, San Francisco, CA, 2000.
[13] 紀偉倫, “鐵磁性 薄膜之磁致伸縮研究”, 國立台灣科技大學機械工程系, 2009.
[14] P. Pernod, V. Preobrazhensky. Journal of Magnetism and Magnetic Materials 184, 1998.
[15] Theodore F.Boart: Linear Electronics, New York, Merrill, an imprint of Macmillan publishing company, 1994.
[16] 白榮修, “磁縮致動含感測元件研製”, 逢甲大學機械工程學系, 2009.
[17] F. Claeyssen, and N. Lhermet, “Actuators Based on Giant Magnetostrictive Materials”, Cedrat Technologies, 2002.
[18] F. Claeyssen, N. Lhermet, and T. Maillard, “Magnetostrictive Actuators Compared to Piezoelectric Actuators”, Cedrat Technologies, 2002.
[19] 吳鴻達, “磁致伸縮式液位指示器”, 實務專題技術報告, 國立台灣科技大學機械工程系, 2012.
[20] 陳高桓, “複合材料的的等效磁致伸縮係數”, 國立成功大學土木工程研究所, 2003.
[21] 吳順卿,” 磁石式磁變形致動器之開發與特性研究”, 國立台灣大學機械工程學研究所論文, 2000.
[22] John Sewell and Phillip Kuhn, ’’Comparison of Magnetic Biasing Techniques For TERFENOL-D’’, Proc. of. 2nd Int. Conf. On Giant Magnetostrictive and Amorphous Alloys for Sensors and Actuators, 1988.

QR CODE