簡易檢索 / 詳目顯示

研究生: 羅偉哲
Wei-Che Lo
論文名稱: 高速光學分析聚二甲基矽氧烷光柵於大腸癌循環腫瘤細胞的篩檢與培養監控
Rapid Optical Analysis of Polydimethylsiloxane Grating for Diagnosis of Colorectal Cancer and Circulating Tumor Cell Counting During Culture
指導教授: 陳建光
Jem-Kun Chen
口試委員: 蘇舜恭
Shuenn-kung Su
黃啟賢
Chi-Hsien Huang
李愛薇
Ai-Wei Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 164
中文關鍵詞: 聚二甲基矽氧烷循環腫瘤細胞抗沾黏細胞培養聚電解質多層膜雷射細胞監控定量
外文關鍵詞: polydimethylsiloxane, layer by layer, laser, monitor, cell growth
相關次數: 點閱:386下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以VLSI技術在矽晶片上製備出線型以及洞型有序陣列,再利用聚二甲基矽氧烷(Polydimethylsiloxane,PDMS)將矽晶片上的圖案轉印出來成為PDMS的一維以及二維光柵。接著將表面進行親水處理、矽烷類自組裝層改質、以EDC/NHS反應將上皮細胞黏附分子抗體-生物素(Anti-Epithelial Cellular Adhecion Molecule-Biotin,Anti-EpCAM-biotin)中biotin之羧基活化固定於PDMS光柵上,用以捕捉血液中循環腫瘤細胞(Circulating tumor cells,CTCs),由於血液分離術中無法分離CTC與白血球,因此搭配牛血清蛋白(Bovine Serum Albumin,BSA) 處理降低白血球沾黏;光柵的結構可雷射產生特殊的繞射現象,可以繞射強度為基準進行大腸癌快速檢測。結果顯示,基材對白血球的沾附量可達到一穩定值(1000萬顆/c.c.血液的濃度維持在平均178顆),雷射分析儀得到健康人繞射強度值範圍(3.33173 E+07 cnts ~3.45794 E+07 cnts);另外繞射強度值偵測靈敏度為4顆,且隨著細胞培養顆數的上升,繞射強度呈下降的趨勢;在臨床試驗中,可以經由血液快速分辨健康人及大腸癌患者。
臨床檢體之癌細胞有利於未來基因治療的研究,故藉由細胞培養放大癌細胞數量就變得非常重要,且因為一般細胞生長監控用計數器極為不便,需要耗費人力及時間且非常主觀,所以以雷射分析的方式取而代之。為了將基材的培養效能提升,選用細胞外基質之高分子作聚電解質多層膜的材料,增加細胞的增生及貼附率,並搭配雷射分析儀作細胞生長監控,結果顯示細胞外基質環境確實提升細胞的貼覆效果,分別從60.4%(柱型)、71%(線型)上升到70.7%(柱型)及92.3%(線型)。雷射數值對應細胞顆數成長也呈高度線性關係,證實雷射分析儀可以進行細胞監控定量。依照細胞成長趨勢到第十天變化量為十倍,推估當循環腫瘤細胞抓到10顆後,在第十天可以成長到100顆。最後以多層膜之裂解酶對培養後之細胞作釋放,釋放率達到98.9%(線型)及99.7%(柱型),成為一可偵測又能培養的釋放之基材。


In this study, we patterned ordered line and hole arrays with photoresist on the silicon surface by VLSI process. The regular patterns of photoresist were transferred with polydimethylsiloxane (PDMS) to generate ordered line and pillar arrays of 1D and 2D grating of PDMS. The grating surfaces were sequentially modified with Anti-Epithelial Cellular Adhecion Molecule-Biotin(Anti-EpCAM-biotin), a kind of antibody for immunosorbent of CTC, by EDC/NHS reaction. In addition, bovine serum albumin (BSA) was exploited to educe the fouling of white blood cells(WBCs). Regular structure leads to special diffraction effect, CTC attachment results the decrease of the diffraction intensity. Therefore, a laser system can exploit to detect the CTCs rapidly on the surface. The results showed that the amounts of WBCs attached on substrate remained 178corresponding to the diffractive intensity ranged from 3.33173 E+07 cnts to 3.45794 E+07 cnts for the sample from a healthy subject. The diffractive intensity decreased with the attachment of CTCs on the surface. The sensitivity of the CTC detection reached to 4 cells. The results of clinical experiment suggest that the detection of CTCs with the approach is able to diagnose a healthy subject and a patient of colorectal cancer.
The cancer cells from clinical specimens have a great development of future genetic therapy, cell culture becomes extremely important. In general, monitoring of cell growth was inefficient by using cell counter; however, it is inconvenient. Therefore, laser system was exploited to monitor the cell amounts in real time. In order to increase the efficiency of cell culture, we used layer by layer to coat extracellular matrix polymers on the substrate. The laser value corresponds to the numbers of cells reached a highly linear relationship, which could quantify cells. According to the trends of cell proliferate rate, we estimated that 10 CTCs captured from clinical specimens may increase up to 100 cells in 10 days. Finally, we released the cells, and 98.9% (line array) and 99.7% (pillar array) cells on the surface could be released.
The 1D and 2D grating of PDMS can capture the CTCs from the whole blood samples and culture the clinical CTCs, which have potential applications as diagnosis of colorectal cancer.

摘要 I Abstract III 致謝 VI 目錄 IX 表目錄 XII 圖目錄 XIII 1. 前言 1 1.1. 研究背景 1 1.2. 研究動機與目的 2 2. 文獻回顧與理論 4 2.1. 循環腫瘤細胞檢測 4 2.2. 細胞培養 7 2.3. 微流體元件簡介 8 2.4. 聚二甲基矽氧烷 9 2.5. 微影製程 11 2.6. 自組裝單分子層 13 2.7. 共價鍵固定法(EDC/NHS reaction) 15 2.8. 聚電解質多層膜法 17 2.9. 天然高分子 21 2.9.1. 殼聚醣 22 2.9.2. 海藻酸 23 2.10. 三維結構培養 25 2.11. 細胞釋放 27 3. 儀器原理 30 3.1. 表面電位分析儀 30 3.2. 電漿蝕刻機 31 3.3. 傅立葉轉換紅外線光譜儀 33 3.4. 接觸角 38 3.5. 原子力顯微鏡 40 3.6. 掃描式電子顯微鏡 45 3.7. X光光電能譜儀 46 3.8. 螢光光譜儀 49 4. 實驗流程與方法 50 4.1. 實驗流程圖 50 4.2. 實驗藥品 51 4.3. 實驗儀器 53 4.4. 實驗步驟 54 4.4.1. 微影製程製備具圖案化光阻層 54 4.4.2. 圖案化轉印於PDMS薄膜 57 4.4.3. PDMS表面改質 58 4.4.4. PDMS表面改質Anti-EpCAM conjugated biotin 59 4.4.5. PDMS-EpCAM conjugated biotin表面blocking(BSA) 60 4.4.6. 白血球抗沾黏實驗 61 4.4.7. 循環腫瘤細胞偵檢 61 4.4.8. PDMS表面接枝聚電解質多層膜 62 4.4.9. 細胞培養 63 4.4.10. 細胞釋放 64 4.4.11. 細胞試片處理 64 4.4.12. 雷射分析儀細胞定量檢測 65 5. 結果與討論 66 5.1. 圖案化表面分析 66 5.1.1. 微影製程光阻圖案 66 5.1.2. PDMS轉印圖案化 68 5.2. PDMS圖案化光學性質 70 5.2.1. 可見光繞射 70 5.2.2. 雷射繞射 71 5.3. 癌症快速篩檢 73 5.3.1. ESCA光譜 73 5.3.2. 白血球之檢測 74 5.3.3. 大腸癌細胞之檢測 77 5.3.4. 臨床檢體之測試 82 5.4. PDMS表面接枝聚電解質多層膜分析 85 5.4.1. Zeta potential 85 5.4.2. ESCA光譜 87 5.4.3. IR光譜 91 5.4.4. 接觸角親疏水測定 93 5.4.5. 聚電解質多層膜表面分析 95 5.5. 大腸癌細胞株培養及釋放之分析 101 5.5.1. 基材表面基選擇 101 5.5.2. 聚電解質多層膜層數選擇 103 5.5.3. 細胞培養分析 106 5.5.4. 細胞釋放分析 117 6. 結論 124 參考文獻 125 表目錄 表 5 1:白血球對應雷射能量值 76 表 5 2:循環腫瘤細胞對應雷射能量值 80 表 5 3:ESCA元素含量分析 88 表 5 4:線型不同細胞顆數對應不同雷射能量值 114 表 5 5:柱型不同細胞顆數對應不同雷射能量值 114 表 5 6:線型細胞釋放前後雷射能量值 121 表 5 7:柱型細胞釋放前後雷射能量值 121 圖目錄 圖 2 1:循環腫瘤細胞產生示意圖 4 圖 2 2:循環腫瘤細胞與其他血液中成分的比較圖 5 圖 2 3:磁珠抓取循環腫瘤細胞 6 圖 2 4:微流道抓取循環腫瘤細胞 6 圖 2 5:磁珠與微流道綜合抓取循環腫瘤細胞 7 圖 2 6:微流體晶片 9 圖 2 7:聚二甲基矽氧烷 10 圖 2 8:微影製程流程圖 12 圖 2 9:圖案轉印示意圖 12 圖 2 10: APTES自組裝單分子層反應示意圖 15 圖 2 11:EDC/NHS反應之反應機構 16 圖 2 12:聚電解質多層膜的五種製程方法 18 圖 2 13:聚電解質多層膜浸泡法製程示意圖 20 圖 2 14:幾丁質去以醯化得殼聚醣 22 圖 2 15:殼聚醣化學式 23 圖 2 16:海藻酸化學式 24 圖 2 17:海藻酸由不同鑲嵌片段組成 24 圖 2 18:一般常見的二維培養盤 25 圖 2 19:細胞在二維及三維環境下的貼附示意圖 26 圖 2 20:細胞在奈米柱狀結構的貼附示意圖 26 圖 2 21:海藻酸裂解酶 27 圖 2 22:海藻酸裂解酶的斷鍵機制 28 圖 3 1:表面電位圖 31 圖 3 2:電漿表面處理示意圖 33 圖 3 3:雙原子分子伸縮振動示意圖 34 圖 3 4:多原子分子的振動模式 35 圖 3 5:伸縮振動偶級矩變化示意圖 36 圖 3 6:干涉型紅外線光譜儀工作原理圖 36 圖 3 7:干涉型基本方程式示意圖 37 圖 3 8:液滴表面張力示意圖 39 圖 3 9:原子與原子之間的交互作用力因為彼此之間的距離的不同而有所不同,其之間的能量表示也會不同 41 圖 3 10:原子力顯微鏡(AFM)的結構示意圖 42 圖 3 11:AFM不同操作模式示意圖 43 圖 3 12:輕敲式AFM工作原理示意圖 44 圖 3 13:光電子產生示意圖 47 圖 3 14:ESCA儀器圖 48 圖 4 1:熱板預烤和HDMS塗佈表面預處理示意圖 55 圖 4 2:光阻圖案化曝光示意圖 57 圖 4 3:顯影清洗後示意圖 57 圖 4 4:圖案化轉印示意圖 58 圖 4 5:表面親水處理示意圖 59 圖 4 6:矽烷自組裝層示意圖 59 圖 4 7:表面接枝抗體示意圖 60 圖 4 8:表面接枝BSA示意圖 60 圖 4 9:Layer by Layer示意圖 63 圖 5 1:1μm線型晶片不同倍率結果 67 圖 5 2:500nm洞型晶片不同倍率結果 67 圖 5 3:圖案化轉印於PDMS實體 68 圖 5 4:1μm線型PDMS轉印後結果(SEM) 69 圖 5 5:1μm線型PDMS轉印後結果(AFM) 69 圖 5 6:500nm柱型PDMS轉印後結果 70 圖 5 7:500nm柱型PDMS轉印後之AFM 70 圖 5 8:不同角度之光柵實體圖 71 圖 5 9:雷射透射光柵 (A) 1μm線型PDMS (B)500nm柱型PDMS 71 圖 5 10:雷射分析儀之作用原理 72 圖 5 11:ESCA widescan改質抗體前後能譜圖 73 圖 5 12:PDMS偵測基材有無添加BSA之抗沾黏比較 74 圖 5 13:PDMS偵測基材有無添加BSA之抗沾黏比率 75 圖 5 14:柱型PDMS偵測基材對白血球之雷射能量圖 76 圖 5 15:柱型PDMS偵測基材對白血球之雷射能量值 76 圖 5 16:柱型PDMS偵測基材對不同顆數癌細胞之抓取結果(A)6顆 (B)12顆 (C)25顆 (D)50顆 (E)100顆 77 圖 5 17:柱型PDMS偵測基材對不同顆數癌細胞之抓取率 78 圖 5 18:柱型PDMS偵測基材對不同顆數癌細胞之雷射能量圖 79 圖 5 19:循環腫瘤細胞與基材之能量值差異 80 圖 5 20:白血球與循環腫瘤細胞在基材上雷射強度之差異 81 圖 5 21:癌細胞與白血球影響光柵差異性 81 圖 5 22:臨床檢體之測試結果 82 圖 5 23:臨床檢體之雷射圖 83 圖 5 24:健康人與癌症患者與標準值之雷射能量差異 84 圖 5 25:(a)Chitosan膠體表面電位;(b)Alginate膠體表面電位 86 圖 5 26:Chitosan膠體與Alginate膠體表面電位比較 86 圖 5 27:ESCA 各階段widescan能譜圖 87 圖 5 28:Si2p能譜圖 89 圖 5 29:Au4f能譜圖 90 圖 5 30:N1s能譜圖 91 圖 5 31:不同層數聚電解質多層膜成分含量分析 92 圖 5 32:不同階段表面改質之接觸角變化 94 圖 5 33:1μm 線型PDMS-LbL各不同層數之AFM圖(A)LbL 1層(B)LbL 3層(C)LbL 5層(D)LbL 7層(E)LbL 9層 95 圖 5 34:1μm 線型PDMS-LbL各不同層數之剖面高度AFM圖(A)LbL 1層(B)LbL 3層(C)LbL 5層(D)LbL 7層(E)LbL 9層 96 圖 5 35:1μm 線型PDMS-LbL各不同層數之SEM圖(A)LbL 1層(B)LbL 3層(C)LbL 5層(D)LbL 7層(E)LbL 9層 97 圖 5 36:500nm 柱狀型PDMS-LbL各不同層數之AFM圖(A)PDMS (B)LbL 1層(C)LbL 3層(D)LbL 5層(E)LbL 7層(F)LbL 9層 98 圖 5 37:500nm柱狀型PDMS-LbL各不同層數之剖面高度AFM圖(A)PDMS (B)LbL 1層(C)LbL 3層(D)LbL 5層(E)LbL 7層(F)LbL 9層 99 圖 5 38:500nm 柱型PDMS-LbL各不同層數之SEM圖(A)LbL 1層(B)LbL 3層(C)LbL 5層(D)LbL 7層(E)LbL 9層 100 圖 5 39:500nm 柱型PDMS-LbL絲狀結構SEM圖 101 圖 5 40:不同粗糙度對細胞的貼附率 102 圖 5 41:細胞在線型及柱型PDMS上的生長形貌 102 圖 5 42:1μm線型PDMS-LbL不同層數貼附數量差異(A)LbL 0層(B)LbL 1層(C)LbL 3層(D)LbL 5層(E)LbL 7層(F)LbL 9層 104 圖 5 43:1μm線型PDMS-LbL不同層數貼附釋放率比較 104 圖 5 44:500nm柱型PDMS-LbL不同層數貼附數量差異(A)LbL 0層(B)LbL 1層(C)LbL 3層(D)LbL 5層(E)LbL 7層(F)LbL 9層 105 圖 5 45:500nm柱型PDMS-LbL不同層數貼附釋放率比較 105 圖 5 46:1μm線型PDMS-LbL各天數細胞培養之螢光圖 107 圖 5 47:500nm柱型PDMS-LbL各天數細胞培養之螢光圖 108 圖 5 48:1μm線型及500nm柱型PDMS-LbL細胞培養之生長曲線 109 圖 5 49:1μm線型PDMS-LbL細胞培養不同天數之光柵效應 110 圖 5 50:500nm柱型PDMS-LbL細胞培養不同天數之光柵效應 110 圖 5 51:1μm線型PDMS-LbL細胞培養不同天數之雷射能量圖 112 圖 5 52:500nm柱型PDMS-LbL細胞培養不同天數之雷射能量圖 113 圖 5 53:1μm線型PDMS-LbL細胞數目對應雷射強度檢量線 115 圖 5 54:500nm柱型PDMS-LbL細胞數目對應雷射強度檢量線 115 圖 5 55:1μm線型PDMS-LbL細胞釋放前後之螢光圖 117 圖 5 56:500nm柱型PDMS-LbL細胞釋放前後之螢光圖 118 圖 5 57:1μm線型PDMS-LbL細胞釋放前後之光柵效應 119 圖 5 58:500nm柱型PDMS-LbL細胞釋放前後之光柵效應 119 圖 5 59:1μm線型PDMS-LbL細胞釋放前後之雷射能量圖 120 圖 5 60:500nm柱型PDMS-LbL細胞釋放前後之雷射能量圖 120 圖 5 61:1μm線型PDMS-LbL細胞釋放前後及基材之雷射能量比較 122 圖 5 62:500nm柱型PDMS-LbL細胞釋放前後及基材之雷射能量比較 122

[ ] Braun, Stephan, and Bjørn Naume. "Circulating and disseminated tumor cells." Journal of clinical oncology 23.8 (2005): 1623-1626.
[ ] Pantel, Klaus, et al. "Detection and clinical implications of early systemic tumor cell dissemination in breast cancer." Clinical cancer research 9.17 (2003): 6326-6334.
[ ] Ashworth, T. R. "A case of cancer in which cells similar to those in the tumours were seen in the blood after death." Aust Med J. 14 (1869): 146.
[ ] Evans, R. A. "The" seed and soil" hypothesis and the decline of radical surgery: a surgeon's opinion." Texas medicine 86.9 (1990): 85-89.
[ ] Cristofanilli, Massimo, et al. "Circulating tumor cells, disease progression, and survival in metastatic breast cancer." N Engl J Med 2004.351 (2004): 781-791.
[ ] Cohen, Steven J., et al. "Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer." Journal of clinical oncology 26.19 (2008): 3213-3221.
[ ] De Bono, Johann S., et al. "Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer." Clinical cancer research 14.19 (2008): 6302-6309.
[ ] Qian, Weiyi, Yan Zhang, and Weiqiang Chen. "Capturing cancer: Emerging microfluidic technologies for the capture and characterization of circulating tumor cells." Small 11.32 (2015): 3850-3872.
[ ] Galanzha, Ekaterina I., and Vladimir P. Zharov. "Circulating tumor cell detection and capture by photoacoustic flow cytometry in vivo and ex vivo." Cancers 5.4 (2013): 1691-1738.
[ ] Sun, Wenjie, et al. "High-performance size-based microdevice for the detection of circulating tumor cells from peripheral blood in rectal cancer patients." PloS one 8.9 (2013): e75865.
[ ] Lianidou, Evi S., and Athina Markou. "Circulating tumor cells in breast cancer: detection systems, molecular characterization, and future challenges." Clinical chemistry 57.9 (2011): 1242-1255.
[ ] Went, Philip TH, et al. "Frequent EpCam protein expression in human carcinomas." Human pathology 35.1 (2004): 122-128.
[ ] Powell, Ashley A., et al. "Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines." PloS one 7.5 (2012): e33788.
[ ] Stott, Shannon L., et al. "Isolation of circulating tumor cells using a microvortex-generating herringbone-chip." Proceedings of the National Academy of Sciences 107.43 (2010): 18392-18397.
[ ] Autebert, Julien, et al. "Fully Automates immunomagnetic Lab-on-chip for rare cancer cells sorting. Enumeration and in-situ analysis." Proc. Micro Total Analysis Systems. 2012.
[ ] Bai, Linling, et al. "Peptide-based isolation of circulating tumor cells by magnetic nanoparticles." Journal of Materials Chemistry B 2.26 (2014): 4080-4088.
[ ] Sheng, Weian, et al. "Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device." Analytical chemistry 84.9 (2012): 4199-4206.
[ ] Chaudhuri, Parthiv Kant, et al. "Microfluidics for research and applications in oncology." Analyst 141.2 (2016): 504-524.
[ ] Manz, Andréas, N. Graber, and H. áM Widmer. "Miniaturized total chemical analysis systems: a novel concept for chemical sensing." Sensors and actuators B: Chemical 1.1-6 (1990): 244-248.
[ ] Xiao, H. "半導體製程技術導論, 羅正忠和張鼎張譯." ed: 二版, 臺灣培生教育出版, 臺北市, 民國九十三年 (2007).
[ ] Du, Ke, et al. "Wafer-Scale pattern transfer of metal nanostructures on polydimethylsiloxane (PDMS) substrates via holographic nanopatterns." ACS applied materials & interfaces 4.10 (2012): 5505-5514.
[ ] Xu, Jingdong, et al. "Room-temperature imprinting method for plastic microchannel fabrication." Analytical Chemistry 72.8 (2000): 1930-1933.
[ ] Bigelow, W. C., D. L. Pickett, and W. A. Zisman. "Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids." Journal of Colloid Science1.6 (1946): 513-538.
[ ] Nuzzo, Ralph G., and David L. Allara. "Adsorption of bifunctional organic disulfides on gold surfaces." Journal of the American Chemical Society 105.13 (1983): 4481-4483.
[ ] Laibinis, Paul E., et al. "Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold." Journal of the American Chemical Society 113.19 (1991): 7152-7167.
[ ] Gopireddy, Deepthi, and Scott M. Husson. "Room temperature growth of surface-confined poly (acrylamide) from self-assembled monolayers using atom transfer radical polymerization." Macromolecules 35.10 (2002): 4218-4221.
[ ] Yamada, Ryo, Hiromi Wano, and Kohei Uosaki. "Effect of temperature on structure of the self-assembled monolayer of decanethiol on Au (111) surface." Langmuir 16.13 (2000): 5523-5525.
[ ] Delamarche, E. A. al, et al. "Thermal stability of self-assembled monolayers." Langmuir 10.11 (1994): 4103-4108.
[ ] Howarter, John A., and Jeffrey P. Youngblood. "Optimization of silica silanization by 3-aminopropyltriethoxysilane." Langmuir 22.26 (2006): 11142-11147.
[ ] Simon, A., et al. "Study of two grafting methods for obtaining a 3-aminopropyltriethoxysilane monolayer on silica surface." Journal of colloid and interface science 251.2 (2002): 278-283.
[ ] Richardson, Joseph J., Mattias Björnmalm, and Frank Caruso. "Technology-driven layer-by-layer assembly of nanofilms." Science 348.6233 (2015): aaa2491.
[ ] Dubas, Stephan T., and Joseph B. Schlenoff. "Factors controlling the growth of polyelectrolyte multilayers." Macromolecules 32.24 (1999): 8153-8160.
[ ] Thomas, Ian M. "Single-layer TiO 2 and multilayer TiO 2–SiO 2 optical coatings prepared from colloidal suspensions." Applied optics 26.21 (1987): 4688-4691.
[ ] Schlenoff, Joseph B., Stephan T. Dubas, and Tarek Farhat. "Sprayed polyelectrolyte multilayers." Langmuir 16.26 (2000): 9968-9969.
[ ] Izquierdo, A., et al. "Dipping versus spraying: exploring the deposition conditions for speeding up layer-by-layer assembly." Langmuir 21.16 (2005): 7558-7567.
[ ] Sun, Junqi, Mingyuan Gao, and Jochen Feldmann. "Electric field directed layer-by-layer assembly of highly fluorescent CdTe nanoparticles." Journal of nanoscience and nanotechnology 1.2 (2001): 133-136.
[ ] Hong, Xia, et al. "Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach." Chemistry of materials 16.21 (2004): 4022-4027.
[ ] Wang, Yifeng, et al. "Coupling Electrodeposition with Layer‐by‐Layer Assembly to Address Proteins within Microfluidic Channels." Advanced Materials 23.48 (2011): 5817-5821.
[ ] Raman, Namrata, et al. "Polymer multilayers loaded with antifungal β-peptides kill planktonic Candida albicans and reduce formation of fungal biofilms on the surfaces of flexible catheter tubes." Journal of Controlled Release 191 (2014): 54-62.
[ ] Madaboosi, Narayanan, et al. "Microfluidics as A Tool to Understand the Build‐Up Mechanism of Exponential‐Like Growing Films." Macromolecular rapid communications 33.20 (2012): 1775-1779.
[ ] Xiang, Yan, Shanfu Lu, and San Ping Jiang. "Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors." Chemical Society Reviews 41.21 (2012): 7291-7321.
[ ] Ding, Bin, Kouji Fujimoto, and Seimei Shiratori. "Preparation and characterization of self-assembled polyelectrolyte multilayered films on electrospun nanofibers." Thin Solid Films 491.1 (2005): 23-28.
[ ] Elbakry, Asmaa, et al. "Layer-by-layer assembled gold nanoparticles for siRNA delivery." Nano letters 9.5 (2009): 2059-2064.
[ ] Decher, Gero. "Fuzzy nanoassemblies: toward layered polymeric multicomposites." science 277.5330 (1997): 1232-1237.
[ ] Laurent, Delphine, and Joseph B. Schlenoff. "Multilayer assemblies of redox polyelectrolytes." Langmuir 13.6 (1997): 1552-1557.
[ ] Lee, Soo-Hyoung, J. Kumar, and S. K. Tripathy. "Thin film optical sensors employing polyelectrolyte assembly." Langmuir 16.26 (2000): 10482-10489.
[ ] Ogawa, Tasuku, et al. "Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes." Nanotechnology 18.16 (2007): 165607.
[ ] Kokubo, Hiroshi, et al. "Multi-core cable-like TiO2 nanofibrous membranes for dye-sensitized solar cells." Nanotechnology 18.16 (2007): 165604.
[ ] Tang, Zhiyong, et al. "Biomedical applications of layer‐by‐layer assembly: from biomimetics to tissue engineering." Advanced materials 18.24 (2006): 3203-3224.
[ ] Boudou, Thomas, et al. "Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications." Advanced Materials 22.4 (2010): 441-467.
[ ] Delcea, Mihaela, Helmuth Möhwald, and André G. Skirtach. "Stimuli-responsive LbL capsules and nanoshells for drug delivery." Advanced drug delivery reviews63.9 (2011): 730-747.
[ ] Hynes, Richard O. "The extracellular matrix: not just pretty fibrils." Science326.5957 (2009): 1216-1219.
[ ] Mano, J. F., et al. "Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends." Journal of the Royal Society Interface 4.17 (2007): 999-1030.
[ ] Crouzier, Thomas, Thomas Boudou, and Catherine Picart. "Polysaccharide-based polyelectrolyte multilayers." Current Opinion in Colloid & Interface Science 15.6 (2010): 417-426.
[ ] Kumar, Majeti NV Ravi. "A review of chitin and chitosan applications." Reactive and functional polymers 46.1 (2000): 1-27.
[ ] Fakhry, Ali, et al. "Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts." Biomaterials 25.11 (2004): 2075-2079.
[ ] Geng, Xinying, Oh-Hyeong Kwon, and Jinho Jang. "Electrospinning of chitosan dissolved in concentrated acetic acid solution." Biomaterials 26.27 (2005): 5427-5432.
[ ] Heinemann, Christiane, et al. "In vitro evaluation of textile chitosan scaffolds for tissue engineering using human bone marrow stromal cells." Biomacromolecules 10.5 (2009): 1305-1310.
[ ] Kurita, Keisuke. "Chitin and chitosan: functional biopolymers from marine crustaceans." Marine Biotechnology 8.3 (2006): 203.
[ ] Kumar, Majeti NV Ravi. "A review of chitin and chitosan applications." Reactive and functional polymers 46.1 (2000): 1-27.
[ ] Yi, Hyunmin, et al. "Biofabrication with chitosan." Biomacromolecules 6.6 (2005): 2881-2894.
[ ] Heinemann, Christiane, et al. "Novel textile chitosan scaffolds promote spreading, proliferation, and differentiation of osteoblasts." Biomacromolecules9.10 (2008): 2913-2920.
[ ] Khor, Eugene. Chitin: fulfilling a biomaterials promise. Elsevier, 2014.
[ ] Suh, J-K. Francis, and Howard WT Matthew. "Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review." Biomaterials 21.24 (2000): 2589-2598.
[ ] Muzzarelli, R., et al. "Biological activity of chitosan: ultrastructural study." Biomaterials 9.3 (1988): 247-252.
[ ] Dhiman, Harpreet K., Alok R. Ray, and Amulya K. Panda. "Characterization and evaluation of chitosan matrix for in vitro growth of MCF-7 breast cancer cell lines." Biomaterials 25.21 (2004): 5147-5154.
[ ] S. Aibi, Int. J. Biol. Macromol 13.40 (1991).
[ ] Belamie, Emmanuel, et al. "Spherulitic crystallization of chitosan oligomers." Langmuir 15.4 (1999): 1549-1555.
[ ] Shapiro, Lilia, and Smadar Cohen. "Novel alginate sponges for cell culture and transplantation." Biomaterials 18.8 (1997): 583-590.
[ ] Smidsrød, Olav. "Molecular basis for some physical properties of alginates in the gel state." Faraday discussions of the Chemical Society 57 (1974): 263-274.
[ ] Smidsrod, O. "Properties of Poly (1, 4-Hexuronates) in Gel State. 2. Comparison of Gels of Different Chemical Composition." Acta Chemica Scandinavica 26.1 (1972): 79.
[ ] de Vos, Paul, et al. "Alginate-based microcapsules for immunoisolation of pancreatic islets." Biomaterials 27.32 (2006): 5603-5617.
[ ] Lu, Jian-Wei, et al. "Electrospinning of sodium alginate with poly (ethylene oxide)." Polymer 47.23 (2006): 8026-8031.
[ ] Sennerby, LRTABaAT, et al. "Acute tissue reactions to potassium alginate with and without colour/flavour additives." Biomaterials 8.1 (1987): 49-52.
[ ] Huh, Dongeun, Geraldine A. Hamilton, and Donald E. Ingber. "From 3D cell culture to organs-on-chips." Trends in cell biology 21.12 (2011): 745-754.
[ ] Batalov, Ivan, and Adam W. Feinberg. "Differentiation of cardiomyocytes from human pluripotent stem cells using monolayer culture." Biomarker insights10.Suppl 1 (2015): 71.
[ ] Abbott, Alison. "Cell culture: biology's new dimension. " Nature 424.6951 (2003): 870-872.
[ ] Roskelley, C. D., and M. J. Bissell. "Dynamic reciprocity revisited: a continuous, bidirectional flow of information between cells and the extracellular matrix regulates mammary epithelial cell function." Biochemistry and cell biology 73.7-8 (1995): 391-397.
[ ] Cukierman, Edna, et al. "Taking cell-matrix adhesions to the third dimension." Science 294.5547 (2001): 1708-1712.
[ ] Wan, Yuan, et al. "Surface-immobilized aptamers for cancer cell isolation and microscopic cytology." Cancer research 70.22 (2010): 9371-9380.
[ ] Wan, Yuan, et al. "Nanotextured substrates with immobilized aptamers for cancer cell isolation and cytology." Cancer 118.4 (2012): 1145-1154.
[ ] Wang, Shunqiang, Yuan Wan, and Yaling Liu. "Effects of nanopillar array diameter and spacing on cancer cell capture and cell behaviors." Nanoscale6.21 (2014): 12482-12489.
[ ] Vickers, Dwayne AL, et al. "Lectin-mediated microfluidic capture and release of leukemic lymphocytes from whole blood." Biomedical microdevices 13.3 (2011): 565-571.
[ ] Xie, Min, et al. "Lectin-modified trifunctional nanobiosensors for mapping cell surface glycoconjugates." Biosensors and Bioelectronics 24.5 (2009): 1311-1317.
[ ] Zheng, Ting, et al. "Lectin-modified microchannels for mammalian cell capture and purification." Biomedical microdevices 9.4 (2007): 611-617.
[ ] Chen, Li, et al. "Aptamer‐mediated efficient capture and release of T lymphocytes on nanostructured surfaces." Advanced Materials 23.38 (2011): 4376-4380.
[ ] Shen, Qinglin, et al. "Specific Capture and Release of Circulating Tumor Cells Using Aptamer‐Modified Nanosubstrates." Advanced Materials 25.16 (2013): 2368-2373.
[ ] Zhao, Weian, et al. "Bioinspired multivalent DNA network for capture and release of cells." Proceedings of the National Academy of Sciences 109.48 (2012): 19626-19631.
[ ] Shin, Dong-Sik, et al. "Photolabile micropatterned surfaces for cell capture and release." Chemical Communications 47.43 (2011): 11942-11944.
[ ] Wang, Pengfei, Huayou Hu, and Yun Wang. "Novel photolabile protecting group for carbonyl compounds." Organic letters 9.8 (2007): 1533-1535.
[ ] Sada, Takao, et al. "Near-IR laser-triggered target cell collection using a carbon nanotube-based cell-cultured substrate." ACS nano 5.6 (2011): 4414-4421.
[ ] Yoon, Hyeun Joong, Molly Kozminsky, and Sunitha Nagrath. "Emerging role of nanomaterials in circulating tumor cell isolation and analysis." ACS nano 8.3 (2014): 1995-2017.
[ ] Colinas, Robert J., and Anne C. Walsh. "Cell separation based on the reversible interaction between calmodulin and a calmodulin-binding peptide." Journal of immunological methods 212.1 (1998): 69-78.
[ ] Alix-Panabières, Catherine, and Klaus Pantel. "Technologies for detection of circulating tumor cells: facts and vision." Lab on a Chip 14.1 (2014): 57-62.
[ ] Zheng, Qin, Samir M. Iqbal, and Yuan Wan. "Cell detachment: post-isolation challenges." Biotechnology advances 31.8 (2013): 1664-1675.
[ ] Born, C., et al. "Estimation of disruption of animal cells by laminar shear stress." Biotechnology and bioengineering 40.9 (1992): 1004-1010.
[ ] Li, Wei, et al. "Biodegradable nano-films for capture and non-invasive release of circulating tumor cells." Biomaterials 65 (2015): 93-102.
[ ] Tsai, Wen-Sy, et al. "Circulating tumor cell count correlates with colorectal neoplasm progression and is a prognostic marker for distant metastasis in non-metastatic patients." Scientific reports 6 (2016).

QR CODE