簡易檢索 / 詳目顯示

研究生: 蔡依雯
Yi-Wen Tsai
論文名稱: 異原子摻雜碳量子點之光可調性研究及其於生物顯影與抗氧化之應用
Synthesis of heteroatom-doped carbon dots with tunable luminescence properties for bioimaging and free radical scavenging
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 黃志清
Chih-Ching Huang
蔡伸隆
Shen-Long Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 120
中文關鍵詞: 碳量子點異原子摻雜光可調性螢光顯影抗氧化自由基
外文關鍵詞: carbon dots, heteroatom-doped, tunable luminescence, cell imaging, antioxidant, free radicals
相關次數: 點閱:389下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究結合奈米合成技術及生物醫學應用,以微波輔助加熱法合成碳量子點,並藉由調控異原子摻雜及改變純化方法,成功製備出紅、黃、綠及藍色螢光之碳量子點,擁有合成時間短、低毒性、良好的水分散性及生物相容性等優勢,並將之應用於抗氧化檢測及細胞螢光顯影,賦予碳量子點新穎特性。
第一部分:PMn@Cdots及PMn@Cdots–HA之抗氧化活性應用
以對苯二胺為碳前驅物,選擇磷(phosphorus,P)摻雜以提高其螢光量子產率,而錳(mangnese,Mn)摻雜則賦予碳量子點磁性特徵,利用微波輔助加熱法成功製備出紅色螢光碳量子點。而本研究針對PMn@Cdots進行抗氧化檢測之應用,分別利用DPPH、•OH及O2-•測定其抗氧化效果,而與抗壞血酸相比,證實PMn@Cdots亦具備有良好的抗氧化活性。再進一步將PMn@Cdots-HA應用於體外細胞,藉由H2O2作為活性氧來源對細胞造成氧化損傷,發現經PMn@Cdots-HA培養後之細胞能夠有效抵抗H2O2所造成的傷害,再次驗證其優異的抗氧化特性。
第二部分:N、S、P摻雜可調性螢光碳量子點之合成(P@Cdots、NS@Cdots、NSP@Cdots)
同樣以對苯二胺作為碳前驅物,利用GSH之氮(nitrogen,N)、硫(sulfur,S)原子與磷(phosphorus,P)原子作為摻雜來源,藉由微波輔助加熱法成功製備出紅、黃及綠色螢光碳量子點,再進一步使用矽膠管柱層析純化法分離出不同顏色碳量子點,並探討其光學性質變化及碳量子點發光機制。而經由體外細胞毒性測試證實本研究所製備出之碳量子點為低毒性材料,並將之應用於細胞螢光顯影,可證實NS@Cdots及NSP@Cdots不須經由表面功能化修飾即可藉由胞飲作用進入細胞而達到良好的螢光顯影效果。


Herein, we combined with nano-synthesis technology and biomedical applications. We present an aqueous based facile microwave-assisted synthesis of carbon quantum dots, which has short synthesis time, low toxicity, water dispersibility and biocompatibility. These advantages are beneficial for biological application. The red, yellow, green and blue fluorescent carbon dots were successfully synthesized by adjusting the heteroatomic doping and changing the purification method. Furthermore, we applied these carbon dots for in vitro antioxidant activity and bioimaging.
Part Ⅰ: Antioxidant activity of phosphorous and manganese element co-doped red magnetofluorescent carbon dots
P-phenylenediamine was used as carbon precursor. Doping phosphorous (P) heteroatom into Cdots could enhance the quantum yield. Furthermore, doping manganese (Mn) could impart magnetic property to carbon dots. The red fluorescent carbon dots were successfully synthesized by one-pot microwave method. In this study, the application of antioxidant property for PMn@Cdots was carried out by using DPPH, •OH and O2-•, respectively. The result was compared with ascorbic acid and it showed that PMn@Cdots also have good antioxidant property. Furthermore, in the protective activity result of H2O2-induced cell death model, it was found that PMn@Cdots-HA could reduce intracellular ROS levels and protect cells from oxidative stress.

摘要 I Abstract II 致謝 IV 總目錄 V 圖目錄 VIII 表目錄 XIV 第一章、緒論 1 1.1 前言 1 1.2 研究動機與內容 2 第二章、理論基礎及文獻回顧 4 2.1 碳量子點(Carbon Quantum Dots,CQDs) 4 2.1.1 碳量子點之起源 4 2.1.2 碳量子點之光學性質 4 2.1.3 碳量子點之發光機制 7 2.2 碳量子點之合成與發展 11 2.2.1 碳量子點之合成方式 11 2.2.2 異原子摻雜之碳量子點 20 2.3 碳量子點之生物顯影應用 22 2.4 自由基與活性物質對人體的影響 28 2.4.1 自由基 28 2.4.2 活性氧與活性氮 29 2.4.3 抗氧化劑之原理及機制 32 2.4.4奈米材料之抗氧化活性研究 33 第三章、實驗儀器與方法 40 3.1 實驗藥品 40 3.2 實驗儀器 43 3.3 實驗步驟 45 3.3.1 P、Mn共摻雜紅色螢光碳量子點之合成(PMn@Cdots) 45 3.3.2 N、S共摻雜綠色螢光碳量子點之合成(NS@Cdots) 45 3.3.3 以管柱層析純化分離NS@Cdots 45 3.3.4 N、S、P摻雜黃色螢光碳量子點之合成(NSP@Cdots) 47 3.4 抗氧化活性檢測方法 47 3.4.1清除DPPH自由基能力檢測 47 3.4.2清除•OH自由基能力檢測 48 3.4.3清除O2-•自由基能力檢測 48 3.5 細胞培養與細胞實驗 49 3.5.1培養液(medium)與PBS之配製 49 3.5.2解凍細胞(Cells Defrost) 50 3.5.3繼代培養(Cell Culture) 50 3.5.4細胞計數(Cell Counting) 51 3.5.5冷凍細胞(Cell Cryopreservation) 51 3.5.6保護細胞抵抗H2O2誘導之氧化應激分析試驗 52 3.5.7 NS@Cdots、NSP@Cdots於細胞之體外毒性測試 53 3.5.8 NS@Cdots、NSP@Cdots於細胞之螢光顯影試片製作 53 第四章、結果與討論 55 4.1 PMn@Cdots及PMn@Cdots–HA之抗氧化活性應用 55 4.1.1 抗氧化活性試驗 55 4.1.2 PMn@Cdots-HA於體外細胞之抗氧化活性試驗 62 4.2 N、S、P摻雜可調性螢光碳量子點之合成(P@Cdots、NS@Cdots、NSP@Cdots) 65 4.2.1 P@Cdots、NS@Cdots、NSP@Cdots之實驗介紹 65 4.2.2 P@Cdots於摻雜不同P異原子濃度之最適化條件探討 65 4.2.3 NS@Cdots於摻雜不同N、S異原子濃度之最適化條件探討 67 4.2.4 NSP@Cdots於摻雜不同P異原子濃度之可調性放光探討 69 4.2.5 NS@Cdots、NSP@Cdots之材料鑑定與分析 70 4.2.6 以管柱層析純化分離NS@Cdots之多色螢光碳量子點探討 76 4.2.7 NS@Cdots與NSP@Cdots之體外細胞毒性測試 79 4.2.8 NS@Cdots與NSP@Cdots之生物顯影應用 81 第五章、結果與未來展望 86 參考文獻 88

[1] H. Li, Z. Kang, Y. Liu and S.-T. Lee. Carbon nanodots: synthesis, properties and applications. Journal of Materials Chemistry, 2012, 22, 24230-24253.
[2] W. Cai, T. Zhang, M. Xu, M. Zhang, Y. Guo, L. Zhang, J. Street, W.-J. Ong and Q. Xu. Full color carbon dots through surface engineering for constructing white light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 2212-2218.
[3] E. Birben, U. M. Sahiner, C. Sackesen, S. Erzurum and O. Kalayci. Oxidative stress and antioxidant defense. World Allergy Organization Journal, 2012, 5, 9.
[4] P. Jenner. Oxidative stress in Parkinson's disease. Annals of Neurology, 2003, 53, S26-S38.
[5] L. M. Sayre, M. A. Smith and G. Perry. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Current Medicinal Chemistry, 2001, 8, 721-738.
[6] X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker and W. A. Scrivens. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 2004, 126, 12736-12737.
[7] Y. P. Sun, B. Zhou, Y. Lin, W. Wang, K. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang and H. Wang. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. Journal of the American Chemical Society, 2006, 128, 7756-7757.
[8] S. N. Baker and G. A. Baker. Luminescent carbon nanodots: emergent nanolights. Angewandte Chemie International Edition, 2010, 49, 6726-6744.
[9] Z. M. Markovic, B. Z. Ristic, K. M. Arsikin, D. G. Klisic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepic, T. K. Kravic-Stevovic, S. P. Jovanovic and M. M. Milenkovic. Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials, 2012, 33, 7084-7092.
[10] Y. Han, H. Huang, H. Zhang, Y. Liu, X. Han, R. Liu, H. Li and Z. Kang. Carbon quantum dots with photoenhanced hydrogen-bond catalytic activity in aldol condensations. Acs Catalysis, 2014, 4, 781-787.
[11] B. De and N. Karak. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. Rsc Advances, 2013, 3, 8286-8290.
[12] X. Jia, J. Li and E. Wang. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale, 2012, 4, 5572-5575.
[13] C. Luk, L. Tang, W. Zhang, S. Yu, K. Teng and S. Lau. An efficient and stable fluorescent graphene quantum dot–agar composite as a converting material in white light emitting diodes. Journal of Materials Chemistry, 2012, 22, 22378-22381.
[14] Z. Luo, Y. Lu, L. A. Somers and A. C. Johnson. High yield preparation of macroscopic graphene oxide membranes. Journal of the American Chemical Society, 2009, 131, 898-899.
[15] J. Zhou, C. Booker, R. Li, X. Zhou, T.-K. Sham, X. Sun and Z. Ding. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). Journal of the American Chemical Society, 2007, 129, 744-745.
[16] H. Peng and J. Travas-Sejdic. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chemistry of Materials, 2009, 21, 5563-5565.
[17] S. Mitra, S. Chandra, S. H. Pathan, N. Sikdar, P. Pramanik and A. Goswami. Room temperature and solvothermal green synthesis of self passivated carbon quantum dots. RSC Advances, 2013, 3, 3189-3193.
[18] H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. A. Tsang, X. Yang and S. T. Lee. Water‐soluble fluorescent carbon quantum dots and photocatalyst design. Angewandte Chemie International Edition, 2010, 49, 4430-4434.
[19] L. Bao, C. Liu, Z. L. Zhang and D. W. Pang. Photoluminescence‐tunable carbon nanodots: surface‐state energy‐gap tuning. Advanced Materials, 2015, 27, 1663-1667.
[20] Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang and Y. Liu. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chemical Communications, 2012, 48, 380-382.
[21] Y. Wang, L. Dong, R. Xiong and A. Hu. Practical access to bandgap-like N-doped carbon dots with dual emission unzipped from PAN@ PMMA core–shell nanoparticles. Journal of Materials Chemistry C, 2013, 1, 7731-7735.
[22] Y. Zhuo, H. Miao, D. Zhong, S. Zhu and X. Yang. One-step synthesis of high quantum-yield and excitation-independent emission carbon dots for cell imaging. Materials Letters, 2015, 139, 197-200.
[23] X. Jia, J. Li and E. Wang. Synthesis and upconversion luminescence of N-doped graphene quantum dots. Nanoscale, 2012, 4, 5572-5575.
[24] M. Li, W. Wu, W. Ren, H.-M. Cheng, N. Tang, W. Zhong and Y. Du. Synthesis and upconversion luminescence of N-doped graphene quantum dots. Applied Physics Letters, 2012, 101, 103107.
[25] H. Li, X. He, Y. Liu, H. Huang, S. Lian, S.-T. Lee and Z. Kang. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon, 2011, 49, 605-609.
[26] L. Cao, X. Wang, M. J. Meziani, F. Lu, H. Wang, P. G. Luo, Y. Lin, B. A. Harruff, L. M. Veca and D. Murray. Carbon dots for multiphoton bioimaging. Journal of the American Chemical Society, 2007, 129, 11318-11319.
[27] M. Tuerhong, X. Yang and Y. Xue-Bo. Review on carbon dots and their applications. Chinese Journal of Analytical Chemistry, 2017, 45, 139-150.
[28] M. J. Molaei. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta, 2018, 196, 456–478.
[29] L. Bao, Z. L. Zhang, Z. Q. Tian, L. Zhang, C. Liu, Y. Lin, B. Qi and D. W. Pang. Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Advanced Materials, 2011, 23, 5801-5806.
[30] M. J. Krysmann, A. Kelarakis, P. Dallas and E. P. Giannelis. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. Journal of the American Chemical Society, 2011, 134, 747-750.
[31] S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang and B. Yang. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angewandte Chemie International Edition, 2013, 52, 3953-3957.
[32] Y. Dong, N. Zhou, X. Lin, J. Lin, Y. Chi and G. Chen. Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chemistry of Materials, 2010, 22, 5895-5899.
[33] S.J. Yu, M.W. Kang, H.C. Chang, K.M. Chen and Y.C. Yu. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. Journal of the American Chemical Society, 2005, 127, 17604-17605.
[34] R. Wang, K.Q. Lu, Z.R. Tang and Y.J. Xu. Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. Journal of Materials Chemistry A, 2017, 5, 3717-3734.
[35] S. Hu, J. Liu, J. Yang, Y. Wang and S. Cao. Laser synthesis and size tailor of carbon quantum dots. Journal of Nanoparticle Research, 2011, 13, 7247-7252.
[36] J. Zhou, C. Booker, R. Li, X. Zhou, T.-K. Sham, X. Sun and Z. Ding. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). Journal of the American Chemical Society, 2007, 129, 744-745.
[37] Z. Ma, Y. L. Zhang, L. Wang, H. Ming, H. Li, X. Zhang, F. Wang, Y. Liu, Z. Kang and S. T. Lee. Bioinspired photoelectric conversion system based on carbon- quantum-dot-doped dye-semiconductor complex. ACS Applied Materials & Interfaces, 2013, 5, 5080-5084.
[38] D. Tang, H. Zhang, H. Huang, R. Liu, Y. Han, Y. Liu, C. Tong and Z. Kang. Carbon quantum dots enhance the photocatalytic performance of BiVO4 with different exposed facets. Dalton Transactions, 2013, 42, 6285-6289.
[39] M. Liu, Y. Xu, F. Niu, J. J. Gooding and J. Liu. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst, 2016, 141, 2657-2664.
[40] J. Deng, Q. Lu, N. Mi, H. Li, M. Liu, M. Xu, L. Tan, Q. Xie, Y. Zhang and S. Yao. Electrochemical synthesis of carbon nanodots directly from alcohols. Chemistry–A European Journal, 2014, 20, 4993-4999.
[41] Z. A. Qiao, Y. Wang, Y. Gao, H. Li, T. Dai, Y. Liu and Q. Huo. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chemical Communications, 2010, 46, 8812-8814.
[42] A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, V. Georgakilas and E. P. Giannelis. Photoluminescent carbogenic dots. Chemistry of Materials, 2008, 20, 4539-4541.
[43] R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll and Q. Li. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angewandte Chemie International Edition, 2009, 48, 4598-4601.
[44] H. Li, X. He, Y. Liu, H. Huang, S. Lian, S.-T. Lee and Z. Kang. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon, 2011, 49, 605-609.
[45] Q. Liang, W. Ma, Y. Shi, Z. Li and X. Yang. Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon, 2013, 60, 421-428.
[46] J.-Y. Li, Y. Liu, Q.-W. Shu, J.-M. Liang, F. Zhang, X.-P. Chen, X.-Y. Deng, M. T. Swihart and K.-J. Tan. One-pot hydrothermal synthesis of carbon dots with efficient up-and down-converted photoluminescence for the sensitive detection of morin in a dual-readout assay. Langmuir, 2017, 33, 1043-1050.
[47] B. Chen, F. Li, S. Li, W. Weng, H. Guo, T. Guo, X. Zhang, Y. Chen, T. Huang and X. Hong. Large scale synthesis of photoluminescent carbon nanodots and their application for bioimaging. Nanoscale, 2013, 5, 1967-1971.
[48] A. de la Hoz, A. Diaz-Ortiz and A. Moreno. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chemical Society Reviews, 2005, 34, 164-178.
[49] L. Song, Y. Cui, C. Zhang, Z. Hu and X. Liu. Microwave-assisted facile synthesis of yellow fluorescent carbon dots from o-phenylenediamine for cell imaging and sensitive detection of Fe3+ and H2O2. RSC Advances, 2016, 6, 17704-17712.
[50] H. Li, Y. Xu, J. Ding, L. Zhao, T. Zhou, H. Ding, Y. Chen and L. Ding. Microwave-assisted synthesis of highly luminescent N-and S-co-doped carbon dots as a ratiometric fluorescent probe for levofloxacin. Microchimica Acta, 2018, 185, 104.
[51] Y. H. Yuan, Z. X. Liu, R. S. Li, H. Y. Zou, M. Lin, H. Liu and C. Z. Huang. Synthesis of nitrogen-doping carbon dots with different photoluminescence properties by controlling the surface states. Nanoscale, 2016, 8, 6770-6776.
[52] Y. Dong, H. Pang, H. B. Yang, C. Guo, J. Shao, Y. Chi, C. M. Li and T. Yu. Carbon‐based dots co‐doped with nitrogen and sulfur for high quantum yield and excitation‐independent emission. Angewandte Chemie International Edition, 2013, 52, 7800-7804.
[53] Z. Li, H. Yu, T. Bian, Y. Zhao, C. Zhou, L. Shang, Y. Liu, L.-Z. Wu, C.-H. Tung and T. Zhang. Highly luminescent nitrogen-doped carbon quantum dots as effective fluorescent probes for mercuric and iodide ions. Journal of Materials Chemistry C, 2015, 3, 1922-1928.
[54] Q. Xiao, Y. Liang, F. Zhu, S. Lu and S. Huang. Microwave-assisted one-pot synthesis of highly luminescent N-doped carbon dots for cellular imaging and multi-ion probing. Microchimica Acta, 2017, 184, 2429-2438.
[55] F. Li, D. Yang and H. Xu. Non‐Metal‐Heteroatom‐Doped Carbon Dots: Synthesis and Properties. Chemistry–A European Journal, 2019, 25, 1165-1176.
[56] S. Chandra, P. Patra, S. H. Pathan, S. Roy, S. Mitra, A. Layek, R. Bhar, P. Pramanik and A. Goswami. Luminescent S-doped carbon dots: an emergent architecture for multimodal applications. Journal of Materials Chemistry B, 2013, 1, 2375-2382.
[57] Q. Xu, P. Pu, J. Zhao, C. Dong, C. Gao, Y. Chen, J. Chen, Y. Liu and H. Zhou. Preparation of highly photoluminescent sulfur-doped carbon dots for Fe (III) detection. Journal of Materials Chemistry A, 2015, 3, 542-546.
[58] S. Sarkar, K. Das, M. Ghosh and P. K. Das. Amino acid functionalized blue and phosphorous-doped green fluorescent carbon dots as bioimaging probe. RSC Advances, 2015, 5, 65913-65921.
[59] J. Zhou, X. Shan, J. Ma, Y. Gu, Z. Qian, J. Chen and H. Feng. Facile synthesis of P-doped carbon quantum dots with highly efficient photoluminescence. RSC Advances, 2014, 4, 5465-5468.
[60] Y. Zhuo, H. Miao, D. Zhong, S. Zhu and X. Yang. One-step synthesis of high quantum-yield and excitation-independent emission carbon dots for cell imaging. Materials Letters, 2015, 139, 197-200.
[61] H. Ding, Y. Ji, J.-S. Wei, Q.-Y. Gao, Z.-Y. Zhou and H.-M. Xiong. Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging. Journal of Materials Chemistry B, 2017, 5, 5272-5277.
[62] Y.-F. Kang, Y.-H. Li, Y.-W. Fang, Y. Xu, X.-M. Wei and X.-B. Yin. Carbon quantum dots for zebrafish fluorescence imaging. Scientific Reports, 2015, 5, 11835.
[63] K. Jiang, S. Sun, L. Zhang, Y. Lu, A. Wu, C. Cai and H. Lin. Red, green, and blue luminescence by carbon dots: full‐color emission tuning and multicolor cellular imaging. Angewandte Chemie International Edition, 2015, 54, 5360-5363.
[64] W. Liu, H. Diao, H. Chang, H. Wang, T. Li and W. Wei. Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sensors and Actuators B: Chemical, 2017, 241, 190-198.
[65] D. K. Khajuria, V. B. Kumar, D. Karasik and A. Gedanken. Fluorescent nanoparticles with tissue-dependent affinity for live zebrafish imaging. ACS Applied Materials & Interfaces, 2017, 9, 18557-18565.
[66] P. Huang, J. Lin, X. Wang, Z. Wang, C. Zhang, M. He, K. Wang, F. Chen, Z. Li and G. Shen. Light‐triggered theranostics based on photosensitizer‐conjugated carbon dots for simultaneous enhanced‐fluorescence imaging and photodynamic therapy. Advanced Materials, 2012, 24, 5104-5110.
[67] C. A. Ferreira, D. Ni, Z. T. Rosenkrans and W. Cai. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Research, 2018, 11, 4955-4984.
[68] B. Halliwell. Oxidants and human disease: some new concepts. The FASEB Journal, 1987, 1, 358-364.
[69] H. Fenton. LXXIII.—Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, 1894, 65, 899-910.
[70] R. V. Lloyd, P. M. Hanna and R. P. Mason. The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Radical Biology and Medicine, 1997, 22, 885-888.
[71] F. Haber and J. Weiss. The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1934, 147, 332-351.
[72] B. Halliwell, M. V. Clement and L. H. Long. Hydrogen peroxide in the human body. FEBS Letters, 2000, 486, 10-13.
[73] B. Halliwell. Oxidants and human disease: some new concepts. The FASEB Journal, 1987, 1, 358-364.
[74] C. C. Chiueh. Neuroprotective properties of nitric oxide. Annals of the New York Academy of Sciences, 1999, 890, 301-311.
[75] S. D. Meo, T. T. Reed, P. Venditti and V. M. Victor. Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Medicine and Cellular Longevity, 2016.
[76] T. Chen, H. Zou, X. Wu, C. Liu, B. Situ, L. Zheng and G. Yang, ACS Applied Materials & Interfaces 2018, 10, 12453-12462.
[77] A. Phaniendra, D. B. Jestadi and L. Periyasamy. Free radicals: properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry,2015, 30, 11-26.
[78] S. Asami, H. Manabe, J. Miyake, Y. Tsurudome, T. Hirano, R. Yamaguchi, H. Itoh and H. Kasai. Cigarette smoking induces an increase in oxidative DNA damage, 8-hydroxydeoxyguanosine, in a central site of the human lung. Carcinogenesis, 1997, 18, 1763-1766.
[79] R. Dut, E. Dizdar, E. Birben, C. Sackesen, O. Soyer, T. Besler and O. Kalayci. Oxidative stress and its determinants in the airways of children with asthma. Allergy, 2008, 63, 1605-1609.
[80] H. Ercan, E. Birben, E. A. Dizdar, O. Keskin, C. Karaaslan, O. U. Soyer, R. Dut, C. Sackesen, T. Besler and O. Kalayci. Oxidative stress and genetic and epidemiologic determinants of oxidant injury in childhood asthma. Journal of Allergy and Clinical Immunology, 2006, 118, 1097-1104.
[81] S. B. Nimse and D. Pal. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 2015, 5, 27986-28006.
[82] J. Arthur. The glutathione peroxidases. Cellular and Molecular Life Sciences CMLS, 2001, 57, 1825-1835.
[83] C. Korsvik, S. Patil, S. Seal and W. T. Self. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chemical Communications, 2007, 10, 1056-1058.
[84] I. Celardo, J. Z. Pedersen, E. Traversa and L. Ghibelli. Pharmacological potential of cerium oxide nanoparticles. Nanoscale, 2011, 3, 1411-1420.
[85] I. Fenoglio, M. Tomatis, D. Lison, J. Muller, A. Fonseca, J. B. Nagy and B. Fubini. Reactivity of carbon nanotubes: free radical generation or scavenging activity, Free Radical Biology and Medicine, 2006, 40, 1227-1233.
[86] X. Shi, B. Jiang, J. Wang and Y. Yang. Influence of wall number and surface functionalization of carbon nanotubes on their antioxidant behavior in high density polyethylene. Carbon, 2012, 50, 1005-1013.
[87] G. Bhalerao, A. Sinha and V. Sathe. Defect-dependent annealing behavior of multi-walled carbon nanotubes. Physica E: Low-dimensional Systems and Nanostructures, 2008, 41, 54-59.
[88] S. Zhao, M. Lan, X. Zhu, H. Xue, T.-W. Ng, X. Meng, C.-S. Lee, P. Wang and W. Zhang. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Applied Materials & Interfaces, 2015, 7, 17054-17060.
[89] Z. M. Markovic, B. Z. Ristic, K. M. Arsikin, D. G. Klisic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepic, T. K. Kravic-Stevovic, S. P. Jovanovic and M. M. Milenkovic. Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials, 2012, 33, 7084-7092.
[90] B. Z. Ristic, M. M. Milenkovic, I. R. Dakic, B. M. Todorovic-Markovic, M. S. Milosavljevic, M. D. Budimir, V. G. Paunovic, M. D. Dramicanin, Z. M. Markovic and V. S. Trajkovic. Photodynamic antibacterial effect of graphene quantum dots. Biomaterials, 2014, 35, 4428-4435.
[91] P. Juzenas, A. Kleinauskas, P. George Luo and Y.P. Sun. Photoactivatable carbon nanodots for cancer therapy. Applied Physics Letters, 2013, 103, 063701.
[92] F. Li, T. Li, C. Sun, J. Xia, Y. Jiao and H. Xu. Selenium‐Doped Carbon Quantum Dots for Free‐Radical Scavenging. Angewandte Chemie International Edition, 2017, 56, 9910-9914.
[93] S. Zhao, M. Lan, X. Zhu, H. Xue, T.W. Ng, X. Meng, C.S. Lee, P. Wang and W. Zhang. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Applied Materials & Interfaces, 2015, 7, 17054-17060.
[94] K. H. Musa, A. Abdullah and A. Al-Haiqi. Determination of DPPH free radical scavenging activity: application of artificial neural networks. Food Chemistry, 2016, 194, 705-711.
[95] J. Xie, N. Wang, X. Dong, C. Wang, Z. Du, L. Mei, Y. Yong, C. Huang, Y. Li and Z. Gu. Graphdiyne nanoparticles with high free radical scavenging activity for radiation protection. ACS Applied Materials & Interfaces, 2018, 11, 2579-2590.
[96] V. Ponti, M. Dianzani, K. Cheeseman and T. Slater. Studies on the reduction of nitroblue tetrazolium chloride mediated through the action of NADH and phenazine methosulphate. Chemico-Biological Interactions, 1978, 23, 281-291.
[97] Y. Qiu, Z. Wang, A. C. Owens, I. Kulaots, Y. Chen, A. B. Kane and R. H. Hurt. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale, 2014, 6, 11744-11755.
[98] V. Ruiz, L. Yate, I. García, G. Cabanero and H.-J. Grande. Tuning the antioxidant activity of graphene quantum dots: Protective nanomaterials against dye decoloration. Carbon, 2017, 116, 366-374.
[99] Y. Wang, W. Kong, L. Wang, J. Z. Zhang, Y. Li, X. Liu and Y. Li. Optimizing oxygen functional groups in graphene quantum dots for improved antioxidant mechanism. Physical Chemistry Chemical Physics, 2019, 21, 1336-1343.
[100] Y. Dong, H. Pang, H. B. Yang, C. Guo, J. Shao, Y. Chi, C. M. Li and T. Yu. Carbon‐based dots co‐doped with nitrogen and sulfur for high quantum yield and excitation‐independent emission. Angewandte Chemie International Edition, 2013, 52, 7800-7804.
[101] W. Wang, Y. Li, L. Cheng, Z. Cao and W. Liu. Water-soluble and phosphorus- containing carbon dots with strong green fluorescence for cell labeling. Journal of Materials Chemistry B, 2013, 2, 46-48.
[102] H. Ding, S.-B. Yu, J.-S. Wei and H.-M. Xiong. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano, 2015, 10, 484-491.
[103] J. Zhao, F. Li, S. Zhang, Y. An and S. Sun. Preparation of N-doped yellow carbon dots and N, P co-doped red carbon dots for bioimaging and photodynamic therapy of tumor. New Journal of Chemistry, 2019, 43, 6332--6342.
[104] L. Song, Y. Cui, C. Zhang, Z. Hu and X. Liu. Microwave-assisted facile synthesis of yellow fluorescent carbon dots from o-phenylenediamine for cell imaging and sensitive detection of Fe 3+ and H2O2. RSC Advances, 2016, 6, 17704-17712.
[105] T. Zhang, J. Zhu, Y. Zhai, H. Wang, X. Bai, B. Dong, H. Wang and H. Song. A novel mechanism for red emission carbon dots: hydrogen bond dominated molecular states emission. Nanoscale, 2017, 9, 13042-13051.
[106] H. Wang, C. Sun, X. Chen, Y. Zhang, V. L. Colvin, Q. Rice, J. Seo, S. Feng, S. Wang and W. Y. William. Excitation wavelength independent visible color emission of carbon dots. Nanoscale, 2017, 9, 1909-1915.
[107] M. Favaro, F. Carraro, M. Cattelan, L. Colazzo, C. Durante, M. Sambi, A. Gennaro, S. Agnoli and G. Granozzi. Multiple doping of graphene oxide foams and quantum dots: new switchable systems for oxygen reduction and water remediation. Journal of Materials Chemistry A, 2015, 3, 14334-14347.
[108] S. Li, Y. Li, J. Cao, J. Zhu, L. Fan and X. Li. Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+. Analytical Chemistry, 2014, 86, 10201-10207.
[109] Z. Liu, J. Xiao, X. Wu, L. Lin, S. Weng, M. Chen, X. Cai and X. Lin. Switch-on fluorescent strategy based on N and S co-doped graphene quantum dots (NS/GQDs) for monitoring pyrophosphate ions in synovial fluid of arthritis patients. Sensors and Actuators B: Chemical, 2016, 229, 217-224.
[110] Y. Dong, H. Pang, H. B. Yang, C. Guo, J. Shao, Y. Chi, C. M. Li and T. Yu. Carbon‐based dots co‐doped with nitrogen and sulfur for high quantum yield and excitation‐independent emission. Angewandte Chemie International Edition, 2013, 52, 7800-7804.
[111] X. Gong, Y. Liu, Z. Yang, S. Shuang, Z. Zhang and C. Dong. An “on-off-on” fluorescent nanoprobe for recognition of chromium (VI) and ascorbic acid based on phosphorus/nitrogen dual-doped carbon quantum dot. Analytica Chimica Acta, 2017, 968, 85-96.
[112] B. Campos, C. Abellán, M. Zougagh, J. Jimenez-Jimenez, E. Rodríguez-Castellón, J. E. da Silva, A. Ríos and M. Algarra. Fluorescent chemosensor for pyridine based on N-doped carbon dots. Journal of Colloid and Interface Science, 2015, 458, 209-216.
[113] H. Nie, M. Li, Q. Li, S. Liang, Y. Tan, L. Sheng, W. Shi and S. X.-A. Zhang. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chemistry of Materials, 2014, 26, 3104-3112.
[114] L. Han, S. G. Liu, J. X. Dong, J. Y. Liang, L. J. Li, N. B. Li and H. Q. Luo. Facile synthesis of multicolor photoluminescent polymer carbon dots with surface-state energy gap-controlled emission. Journal of Materials Chemistry C, 2017, 5, 10785-10793.
[115] L. Daasch and D. Smith. Infrared spectra of phosphorus compounds. Analytical Chemistry, 1951, 23, 853-868.
[116] Q. Zhuang, H. Jia, L. Du, Y. Li, Z. Chen, S. Huang and Y. Liu. Targeted surface-functionalized gold nanoclusters for mitochondrial imaging. Biosensors and Bioelectronics, 2014, 55, 76-82.

無法下載圖示 全文公開日期 2024/08/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE