簡易檢索 / 詳目顯示

研究生: 鄭榆
Yu - Cheng
論文名稱: 自適應點擴散區塊截斷編碼技術及多色調高效率藍雜訊抖動法
Self-adaptive Dot-diffused Block Truncation Coding and Efficient Blue-noise Dithering for Multitoning
指導教授: 郭景明
Jing-Ming Guo
口試委員: 王乃堅
Nai-Jian Wang
繆紹綱
Shaou-Gang Miaou
林鼎然
Ting-Lan Lin
李宗南
Chung-Nan Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 221
中文關鍵詞: 影像壓縮區塊截斷編碼技術數位半色調技術點擴散技術數位多色調技術直接二元搜尋法帶狀效應藍雜訊
外文關鍵詞: Image compression, block truncation coding, digital halftoning, dot diffusion, multitoning dithering, direct binary search, banding effect, blue noise
相關次數: 點閱:293下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要貢獻有兩個部分: 1)自適應點擴散區塊截斷編碼技術與2)多色調高效率藍雜訊抖動法,內容簡述如下:
區塊截斷編碼是一個應用了數十年的著名高效率影像壓縮技術,在本研究中提出一個新自適應點擴散區塊截斷編碼。在設計當中,輸入的原始影像依照影像各區域的複雜度自行判斷並切割成不同大小的區塊。此外,在此方法中使用一自適應參數用來控制量化色階權衡不自然紋理問題,例如區塊效應或是脈衝雜訊。另外,我們也提供一個利用人眼視覺絕對梯度誤差的評估方法,它能夠用來評估影像受到不自然紋理影響的程度。實驗結果可看出,相較於其它過往壓縮技術,本研究所提出的改良技術在四個資料庫及不同的壓縮率下都能夠產生最佳的影像品質。這表示本研究的自適應點擴散區塊截斷編碼,在高解析度影片或圖像場景等應用中都能夠具有最佳的競爭優勢。
數位多色調技術延伸自數位半色調技術,將連續色調的影像轉換成使用三色或者更多色調的量化影像。然而,過往的多色調技術大多容易產生不自然的紋理,像是帶狀效應及線性圖案,而這些問題發生的原因幾乎都是因為不均勻的點分佈,使得量化影像嚴重的降低品質。雖然迭代式多色調技術能夠產生極佳的影像,但也引入了高計算複雜度、帶狀效應及高對比問題。為了能夠改善上述情況,本論文提出多色調高效率藍雜訊抖動法。如實驗結果所呈現,本論文所提出的技術所產生的多色調影像有著傑出的色調相似度。此外,相較於過往其它的多色調技術,本論文提出的方法可達最快的處理速度,並避免了絕大多數的不自然紋理問題。綜合上述說明,本論文所提出的多色調高效率藍雜訊抖動法在實際應用上是最具優勢的候選。


In this thesis, two contributions are presented, including self-adaptive dot-diffused block truncation coding (SDBTC) and efficient blue-noise dithering for multitoning techniques (M-EBND).
Block truncation coding (BTC) is renowned for its high efficiency on image compression applications for decades. In this study, a new approach termed the self-adaptive dot-diffused BTC (SDBTC) is proposed. In this design, the image is adaptively divided into individual blocks of various sizes as per the image textural complexity. In addition, an adaptive parameter selection scheme is utilized to control quantization levels for leveraging artifacts such as blocking effect and impulse noise. In addition, a metric termed the human-visual absolute gradient error (HAGE) is formulated to objectively evaluate the artifacts of interest. Experimental results demonstrate that the proposed method can compress images with the lowest visually perceivable artifacts in contrast to state-of-the-arts across various compression ratios. Moreover, the proposed method is also able to yield the best image quality benchmarked with four datasets. It shows that the proposed method is competitive on the applications of high resolution video and images scenarios.
Multitoning technique, extended from the halftoning, converts the continuous-tone image into quantized image using more than two tones. However, the former methods easily result in the unnatural textures such as banding effect, and thus seriously degrade image quality. Although iterative multitoning methods introduce a better result, the high computational complexity is also involved. To improve visual quality and runtime, the efficient blue-noise dithering for multitoning (M-EBND) is proposed in this paper. As documented in the experimental results, excellent tone-similarity can be achieved. Comparing to the state-of-the-art methods, the proposed method features the shortest runtime, yet avoids the most artifacts. As a result, the proposed M-EBND can be a very competitive candidate for multitoning applications.

中文摘要 Abstract 誌謝 目錄 圖表索引 第一章 緒論 1.1 研究動機與目的 1.2 論文架構 第二章 數位半色調技術文獻探討 2.1 誤差擴散法(Error-diffused, ED) 2.2 有序抖動法(Ordered dither, OD) 2.3 點擴散法(Dot-diffused, DD) 2.4 直接二元搜尋法(Direct binary search, DBS) 2.5 雙指標直接二元搜尋法(Dual metric DBS, DMDBS) 第三章 區塊截斷編碼技術文獻探討 3.1 區塊截斷編碼(Block truncation coding, BTC) 3.2 絕對矩量區塊截斷編碼(Absolute moment BTC, AMBTC) 3.3 誤差擴散區塊截斷編碼(Error-diffused BTC, EDBTC) 3.4 有序抖動區塊截斷編碼(Ordered dither BTC, ODBTC) 3.5 點擴散區塊截斷編碼(Dot-diffused BTC, DDBTC) 3.6 彩色絕對矩量區塊截斷編碼(Color absolute moment BTC, CAMBTC) 3.7 單一位元圖區塊截斷編碼(Single bit-map BTC, SBMBTC) 3.8 基於單一位元圖的編碼方案(Coding schemes based on SBM, CS-SBM) 3.9 分群區塊截斷編碼(BTC with k-means quad clustering, IBTC-KQ) 3.10 彩色點擴散區塊截斷編碼(Color DDBTC, CDDBTC) 第四章 數位多色調技術文獻探討 4.1 多色調誤差擴散法(Multitoning error-diffused, M-ED) 4.2 多色調有序抖動法(Multitoning ordered dither, M-OD) 4.3 多色調直接二元搜尋法(Multitoning direct binary search, M-DBS) 4.4 多色調藍雜訊抖動法(Multitoning blue-noise dithering, M-BND) 4.5 直接多位元搜尋法(Direct multi-bit search, DMS) 4.6 色調替代之誤差擴散法(Multitoning tone-replacement ED, M-TRED) 第五章 自適應點擴散區塊截斷編碼技術 5.1 彩色通道分析 5.2 自適應策略(Adaptive strategy) 5.3 自適應量化色階(Adaptive quantization level) 5.4 週期性圖案(Periodic pattern) 5.5 γ_ω (φ)的定義 5.6 參數設定 5.7 自適應點擴散區塊截斷編碼 5.8 實驗結果比較 5.8.1 影像品質及壓縮率(Image quality and compression ratio) 5.8.2 不自然紋理問題(Artifact problem) 5.8.3 處理速度(Runtime) 5.9 小結 第六章 多色調高效率藍雜訊抖動法 6.1 墨水濃度(Ink concentration) 6.2 篩選法(Screening) 6.3 實驗結果比較 6.3.1 平均功率頻譜密度(Average power spectrum density) 6.3.2 多色調紋理(Multitone textures) 6.3.3 總結比較 6.4 小結 第七章 結論與未來展望 第八章 投稿資料 參考文獻 作者簡介

[1] The USC-SIPI Image Database. (1981) [Online]. Available:
http://sipi.usc.edu/database
[2] R. W. Floyd and L. Steinberg, “An adaptive algorithm for spatial gray scale,” in proc. SID 75 Digest. Society for information Display, pp. 36-37, 1975.
[3] J. F. Jarvis, C. N. Judice, and W. H. Ninke, “A survey of techniques for the display of continuous-tone pictures on bilevel displays,” Comp. Graph. Image Proc., 5(1), pp. 13-40, 1976.
[4] P. Stucki, “MECCA-A multiple-error correcting computation algorithm for bilevel image hardcopy reproduction,” Res. Rep. RZ1060, IBM Res. Lab., Zurich, Switzerland, 1981.
[5] J. N. Shiau and Z. Fan, “A set of easily implementable coefficients in error diffusion with reduced worm artifacts,” SPIE, 2658: 222-225, 1996.
[6] P. Li and J. P. Allebach, “Block interlaced pinwheel error diffusion,” JEI, 14(2), Apr-Jun. 2005.
[7] V. Ostromoukhov, “A simple and efficient error diffusion algorithm,” Computer Graphics (Proceedings of SIGGRAPH 2001), pp. 567-572, 2001.
[8] R. Ulichney, Digital halftoning, Cambridge, MA: MIT Press, 1987.
[9] D. E. Knuth, “Digital halftones by dot diffusion,” ACM Trans. Graph., 6(4), Oct. 1987.
[10] M. Mese and P. P. Vaidyanathan, “Optimized halftoning using dot diffusion and methods for inverse halftoning,” IEEE Trans. Image Processing, 9(4), pp. 691-709, Apr. 2000.
[11] J. M. Guo and Y. F. Liu, “Improved dot diffusion by diffused matrix and class matrix co-optimization,” IEEE Trans. Image Processing, 18(8), pp. 1804-1816, Aug. 2009.
[12] M. Analoui and J. P. Allebach, “Model based halftoning using direct binary search,” Proc. SPIE, vol. 1666, pp. 96-108, Aug. 1992.
[13] J. P. Allebach, “FM screen design using DBS algorithm,” in Proc. IEEE ICIP, vol. 1, Lausanne, Switzerland, pp. 549-552, 1996.
[14] D. J. Lieberman and J. P. Allebach, “Efficient model based halftoning using direct binary search,” in Proc. IEEE ICIP, pp. 775-778, 1997.
[15] D. J. Lieberman and J. P. Allebach, “A dual interpretation for direct binary search and its implications for tone reproduction and texture quality,” IEEE Trans. Image Processing, 9(11), pp. 1950-1963, 2000.
[16] S. H. Kim and J. P. Allebach, “Impact of HVS models on model-based halftoning,” IEEE Trans. Image Processing, 11(3), pp. 258-269, 2002.
[17] R. Näsänen, “Visibility of halftone dot textures,” IEEE Trans. Syst.,Man, Cybern., vol. 14, no. 6, pp. 920–924, 1984.
[18] E. J. Delp and O. R. Mitchell, “Image compression using block truncation coding,” IEEE Trans. Communications, vol. 27, no. 9, pp. 1335-1342, Sept. 1979.
[19] H. Yang and J. Yin, “A secure removable visible watermarking for BTC compressed images,” Multimedia Tools and Applications, vol. 74, no. 6, pp. 1725-1739, Sept. 2013.
[20] C.-C. Lo, Y.-C. Hu, W.-L. Chen, and C.-M. Wu, “Reversible data hiding scheme for BTC-compressed images based on histogram shifting,” International Journal of Security and its Applications, vol. 8, no. 2, pp. 301-314, 2014.
[21] J. M. Guo and Y. F. Liu, “High capacity data hiding for error-diffused block truncation coding,” IEEE Trans. Image Processing, vol. 21, no. 12, pp. 4808-4818, Dec. 2012.
[22] J. M. Guo, H. Prasetyo, and J. H. Chen, “Content-based image retrieval using error diffusion block truncation coding features,” IEEE Trans. Circuits and Systems for Video Technology, vol. 25, no. 3, pp. 466-481, Mar. 2015.
[23] J. M. Guo and H. Prasetyo, “Content-based image retrieval using features extracted from halftoning-based block truncation coding,” IEEE Trans. Image Processing, vol. 24, no. 3, pp. 1010-1024, Mar. 2015.
[24] J. M. Guo, H. Prasetyo, and N. J. Wang, “Effective image retrieval system using dot-diffused block truncation coding features,” IEEE Trans. Multimedia, DOI: 10.1109/TMM.2015.2449234, 2015.
[25] M. Lema and O. R. Mitchell, “Absolute moment block truncation coding and its application to color images,” IEEE Trans. Communications, vol. 32, no. 10, pp. 1148-1157, Oct. 1984.
[26] Y. Wu and D. C. Coll. “Single bit-map block truncation coding of color images,” IEEE J. Sel. Areas Commun, vol. 10, no.5, pp. 952-959, Jun. 1992.
[27] J. M. Guo “Improved block truncation coding using modified error diffusion,” Electronics Letters, vol. 44, no. 7, pp. 462-464, Mar. 2008.
[28] J. M. Guo and M. F. Wu, “Improved block truncation coding based on the void-and-cluster dithering approach,” IEEE Trans. Image Processing, vol. 18, no. 1, pp. 211-213, Jan. 2009.
[29] J. M. Guo and Y. F. Liu, “Improved block truncation coding using optimized dot diffusion,” IEEE Trans. Image Processing, vol. 23, no. 3, pp. 1269-1275, Mar. 2014.
[30] Y. C. Hu, I. C. Chang, K. Y. Liu, and C. L. Hung, “Improved color image coding schemes based on single bit map block truncation coding,” Optical Engineering, vol. 53, no. 9, pp. 093104-093104, Sept. 2014.
[31] P. Franti, P. Nevalainen, and T. Kaudoranta, “Compression of digital image by block truncation coding: a survey,” The Computer Journal, vol. 37, no. 4, pp. 308–332, Mar. 1994.
[32] J. Mathews, M. S. Nair, and L. Jo, “A novel color image coding technique using improved BTC with k-means quad clustering,” Advances in Signal Processing and Intelligent Recognition Systems, vol. 264, pp. 347-357, 2014.
[33] B. W. Kolpatzik and C. A. Bouman, ‘‘Optimized error diffusion for image display,’’ J. Electron. Imaging 1, pp. 277–292, 1992.
[34] S. Sugiura and T. Matika, ‘‘An improved multilevel error diffusion method,’’ J. Imaging Sci. Technol. 39, pp. 495–501.
[35] Q. Yu and K. Spaulding, ‘‘Combining error diffusion, dithering and over-modulation for smooth multilevel printing,’’ in Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts V, R. Eschbach and G. G. Marcu, eds., Proc. SPIE 3963, pp. 446–457, 2000.
[36] F. Faheem, D. L. Lau, and G. R. Arce, ‘‘Multilevel halftoning using bilevel quantizers,’’ in Proceedings of IS&T’s 2001 Processing Images, Image Quality, Capturing Images, Systems (PICS) Conference, pp. 51–54.
[37] Q. Yu, K. J. Parker, K. Spaulding, and R. Miller, “Digital multitoning with overmodulation for smooth texture transition,” J. Electron. Imag., 8(3), pp. 311–321, Jul. 1999.
[38] G. Lin and J. P. Allebach, “Multilevel screen design using direct binary search,” in Proc. SPIE Conf. Ser., vol. 4663, pp. 264–277, Dec. 2001.
[39] J. B. Rodríguez, G. R. Arce, and D. L. Lau, “Blue-noise multitone dithering,” IEEE Trans. Image Process., vol. 17, no. 8, pp. 1368–1382, Aug. 2008.
[40] K. Chandu, M. Stanich, C. W. Wu, and B. Trager, "Direct multi-bit search (DMS) screen algorithm," in Proc. IEEE ICIP, pp. 817-820, 2012.
[41] C. Lee and J. P. Allebach, “The Hybrid Screen-Improving the Breed,” IEEE Trans. Image Process., vol. 19, no. 2, pp. 435-450, Feb. 2010.
[42] J. M. Guo, J. Y. Chang, Y. F. Liu, G. H. Lai, and J. D. Lee, “Tone-replacement error diffusion for multitoning,” IEEE Trans. Image Process., vol. 24, no. 11, pp. 4312–4321, Nov. 2015.
[43] S. Winkler, C. J. van den Branden Lambrecht, and M. Kunt, “Vision and video: models and applications,” Vision Models and Applications to Image and Video Processing. Springer US, p. 201-229, 2001.
[44] J. Z. Wang, J. Li, G. Wiederhold, “SIMPLIcity: semantics-sensitive integrated matching for picture libraries,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 23, no. 9, pp. 947-963, Sept. 2001.
[45] Y. F. Liu, J. M. Guo, B. S. Lai, and J. D. Lee, “High efficient contrast enhancement using parametric approximation,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2444-2448, May. 2013.
[46] J. M. Guo and Y. F. Liu, “Joint compression/watermarking scheme using majority-parity guidance and halftone-based block truncation coding,” IEEE Trans. Image Processing, vol. 19, no. 8, pp. 2056-2069, Aug. 2010.
[47] J. M. Guo and Y. F. Liu, “New class tiling design for dot-diffused halftoning,” IEEE Trans. Image Processing, vol. 22, no. 3, pp. 1199-1208, Mar. 2013.
[48] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical evaluation of recent full reference image quality assessment algorithms,” IEEE Trans. Image Processing, vol. 15, no. 11, pp.3440-3451, Nov. 2006.
[49] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: a feature similarity index for image quality assessment,” IEEE Trans. Image Processing, vol. 20, no. 8, pp. 2378-2386, Aug. 2011.
[50] G. Schaefer and M. Stich, “UCID – an uncompressed color image database,” in Proc. SPIE, Storage and Retrieval Methods and Applications for Multimedia, vol.5307, pp. 472-480, Jan. 2014.
[51] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multi-scale structural similarity for image quality assessment,” in Proc. Asilomar Conf. Signals, Syst. Comput., vol. 2, pp. 1398-1402, Nov. 2003.
[52] Z. Wang and Q. Li, “Information content weighting for perceptual image quality assessment,” IEEE Trans. Image Processing, vol. 20, no. 5, pp. 1185-1198, May. 2011.
[53] H. R. Sheikh and A. C. Bovik, “Image information and visual quality,” IEEE Trans. Image Processing, vol. 15, no. 2, pp. 430-444, Feb. 2006.
[54] NTUST MSP Lab Image Database. (2014) [Online]. Available:
http://msp.ee.ntust.edu.tw/public%20file/ImageSet.rar
[55] Kodak lossless true color image suite. (2004) [Online]. Available:
http://r0k.us/graphics/kodak
[56] H. Jégou, M. Douze, and C. Schmid, “Hamming embedding and weak geometry consistency for large scale image search,” Proceedings of the 10th European conference on Computer vision, Oct. 2008.
[57] C. Lee and J. P. Allebach, “The hybrid screen-improving the breed,” IEEE Trans. Image Process., vol. 19, no. 2, pp. 435-450, Feb. 2010.
[58] Y. F. Liu, and J. M. Guo, “Dot-diffused halftoning with improved homogeneity,” IEEE Trans. Image Process., vol. 24, no. 11, pp. 4581–4591, Nov. 2015.

QR CODE