簡易檢索 / 詳目顯示

研究生: 余柏賢
Yu-Po Hsien
論文名稱: 改善矽水膠隱形眼鏡含水量之分析與探討
Analysis and Discussion on Improving the Water Content of Silicon Hydrogel Contact Lenses
指導教授: 楊銘乾
Yang-Ming Chien
口試委員: 鄭詠馨
Yung-Hsin Cheng
劉定宇
Ting-Yu Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 93
中文關鍵詞: 隱形眼鏡矽水膠含水量HEMA水膠細胞毒性
外文關鍵詞: contact lens, silicone hydrogel, water content, HEMA, hydrogel, cytotoxicity
相關次數: 點閱:252下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)作為基材,與異佛爾酮二異氰酸酯(Isophorone diisocyanate, IPDI)、聚(乙二醇)甲基丙烯酸酯(PEGMA)及甲基丙烯酸-2-羥基乙酯(2-hydroxy-ethyl methacrylate, HEMA)進行聚合反應,合成PDMS-IPDI-PEGMA-HEMA矽水膠共聚物,再加入不同比例之HEMA至PDMS-IPDI-PEGMA-HEMA矽水膠共聚物,使其形成新型態的矽水膠共聚物,以紫外光硬化交聯處理形成矽水膠隱形眼鏡薄膜,並探討加入不同比例的HEMA之物性分析及生物相容性測試,透過含水量量測結果顯示加入HEMA後之矽水膠隱形眼鏡有明顯的改善其含水量特性,並且於細胞毒性試驗結果顯示出良好的細胞相對成長率,根據上述結果,PDMS-IPDI-PEGMA-HEMA經由混摻HEMA後,具有良好的含水量,且對於生物細胞不具有毒性,未來對於隱形眼鏡材料的應用具有良好的潛力。


In this study, polydimethylsiloxane (PDMS) was used as the base material, combined with isophorone diisocyanate (IPDI), poly(ethylene glycol) methacrylate (PEGMA) and 2-hydroxy-ethyl methacrylate (HEMA), was polymerized to synthesize PDMS-IPDI-PEGMA-HEMA silicone rubber copolymer, and then different proportions of HEMA were added to PDMS-IPDI-PEGMA-HEMA followed by curing and cross-linking under ultraviolet light to form a silicone gel contact lens film. The effect on the physical properties and biocompatibility of adding different proportions of HEMA were discussed. The results show that the silicone hydrogel contact lens after adding HEMA has significantly improved its water content characteristics, and the cytotoxicity test results showed a good relative cell growth rate. According to the above results, after being mixed with HEMA, PDMS-IPDI-PEGMA-HEMA exhibited good water content and non-cytotoxic to biological cells. Thus, it has good potential for the application of contact lens materials in the future.

誌謝 I 摘要 II Abstract III 圖索引 VII 表索引 IX 第壹章 緒論 1 1.1研究背景 1 1.2研究目的 3 第貳章 文獻回顧 5 2.1水膠的介紹 5 2.2水膠的合成與分類 7 2.2.1物理膠 7 2.2.2化學性水膠 9 2.3智慧(功能)型水膠 11 2.3.1酸鹼敏感型水膠 11 2.3.2溫度敏感型水膠 12 2.3.3光能敏感型水膠 14 2.3.4其他形式之智慧型水膠 15 2.4隱形眼鏡的介紹及發展歷史 16 2.5隱形眼鏡的分類 20 2.5.1硬式隱形眼鏡 20 2.5.2軟式隱形眼鏡 22 2.6隱形眼鏡材料特殊性質 24 2.6.1含水量 24 2.6.2透氧性 24 2.6.3含水量和透氧性之關係 27 2.6.4離子電荷 28 2.6.5隱形眼鏡與角膜之關係 29 2.7創傷敷料 32 2.8高分子材料表面改質 33 2.9紫外光硬化交聯處理 36 2.10 Polydimethylsiloxane,PDMS 38 2.11 Isophorone diisocyanate,IPDI 40 2.12聚乙二醇甲基丙烯酸甲酯 PEGMA 42 2.13甲基丙烯酸(羥乙基)酯(HEMA) 43 第參章 實驗材料與方法 44 3.1實驗材料 44 3.2實驗設備 46 3.3實驗流程 48 3.4實驗原理圖 49 3.5實驗方法 50 3.6物性分析 52 3.6.1可見光透光率測定(Transmittance) 52 3.6.2傅立葉紅外線光譜測定(Fourier-transform infrared spectroscopy, FT-IR) 53 3.6.3接觸角測試 54 3.6.4平衡含水量測定 55 3.6.5透氧係數測定 56 3.6.6拉伸測試 57 3.7生物相容性測驗(Biocompatibility) 59 3.7.1蛋白質吸附 59 3.7.2細胞培養: 61 3.7.3細胞存活率分析 63 3.7.3細胞毒性試驗(In-vitro cytotoxicity) 64 第肆章 結果與討論 66 4.1可見光透光率測定(Transmittance) 66 4.2傅立葉紅外線光譜測定(Fourier-transform infrared spectroscopy, FT-IR) 68 4.3接觸角測試 70 4.4平衡含水量測定 73 4.5透氧係數測定 75 4.6拉伸測試 77 4.7蛋白質吸附試驗 79 4.8細胞毒性試驗(In-vitro cytotoxicity) 81 第伍章 結論 87 參考文獻 89

[1] L. Bes, K. Huan, E. Khoshdel, M. J. Lowe, C. F. McConville, D. M. Haddleton, "Poly (methylmethacrylate dimethylsiloxane) triblock copolymers synthesized by transition metal mediated living radical polymerization: bulk and surface characterization," European Polymer Journal, vol. 39, no. 1, pp. 5-13, 2003.
[2] Yu-Chin Lai, "A Novel Crosslinker for UV Copolymerization of N-vinylPyrrolidone and Methacrylates to Give Hydrogels," Journal of Polymer Science Part A: Polymer Chemistry, vol. 35, no. 6, pp. 1039-1046, 1997.
[3] Mei-Hui Yang, Lain-Jong Li, Tsang-Feng Ho, "Synthesis and characterization of polymethylsiloxane/poly(ethylene glycol) monomethyl ether copolymers," Journal of the Chinese Colloid and Interface Society, vol. 17, no. 3, pp. 19-28, 1994.
[4] D. H. Walther, G. H. Sin, H. W. Blanch, J. M. Prausnitz, "Pore- size Distributions of Cationic 2-Hydroxyethyl Methacrylate (HEMA) Hydrogels," Polymer Gels and Networks, vol. 3, no. 1, pp. 29-45, 1995.
[5] Qiu Y and Park K, "Environment-sensitive hydrogels for drug delivery," Advanced Drug Delivery Reviews, vol. 64, Supplement, pp. 49-60, 2012
[6] Holden BA and Mertz GW, "Critical oxygen levels to avoid corneal edema for daily and extended wear contact lenses.," Investigative Ophthalmology & Visual Science, vol. 25, no. 1, pp. 1161-1167, 1984
[7] Anzai J, Ueno A, Sasaki H, Shimokawa K and Osa T., "Photo-controlled Permeation of alkali cation through poly (vinyl chloride) crown ether membrane," Macromolecular Rapid Community, vol. 4, no. 11, pp. 697-751, 1983.
[8] Huglin MB and Zakaria MB, "Observations on the homogeneity of crosslinked copolymers prepared by γ-irradiation," Polymer, vol. 25, no. 6, pp. 797-802, 1984.
[9] Katono H, Maruyama A, Sanui K, Okano T, Sakurai Y, " Thermo-responsive swelling and drug release switching of interpenetrating polymer networks composed of poly(acrylamide-co-butyl methacrylate) and poly (acrylic acid)," Journal of Controlled Release, vol. 16, no. 1-2, p.215-227, 1991.
[10] Y. Camberlin, J. P. Pascault, "Quantitative DSC evaluation of phase segregation rate in linear segmented polyurethanes and polyurethaneureas," Journal of Polymer Science Part A: Polymer Chemistry, vol. 21, no. 2, pp. 415-423, 1983.
[11] T. A. Speckhard, S. L. Cooper, "Ultimate tensile properties of segmented polyurethane elastomers: factors leading to reduced properties for polyurethanes based on nonpolar soft segments," Rubber chemistry and technology, vol. 59, no. 3, pp. 405-431, 1986.
[12] T. A. Speckhard, K. K. S. Hwang, C. Z. Yang, W. R. Laupan, S. L. Cooper, "Properties of segmented polyurethane zwitterionomer elastomers," Journal of Macromolecular Science, vol. 23, no. 2, pp. 175-199, 1984.
[13] I. L. J. Dogué, R. Förch, N. Mermilliod, "Plasma-induced hydrogel grafting of vinyl monomers on polypropylene," Journal of Adhesion Science and Technology, vol. 9, no. 12, pp. 1531-1545, 1995.
[14] Y. Wang, J. H. Kim, K. H. Choo, Y. S. Lee, C. H. Lee, "Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization," Journal of Membrane Science, vol. 169, no. 2, pp. 269-276, 2000.
[15] D. A. H. a. G. W. Merrz, "Critical oxygen levels to avoid corneal edema for daily and extended wear contact lenses.," Investigative Ophthalmology & Visual Science, vol. 25, no. 1, pp. 1161-1167, October 1984.
[16] L. Makkonen, "Young’s equation revisited," Journal of Physics: Condensed Matter, vol. 28, no. 13, p. 135001, 2016.
[17] J. J. Chang, P. J. Lin, Y. H. Lee, M. C. Yang, and C. T. Chien, "The effect of covalent immobilization of sialic acid on the removal of lipopolysaccharide and reactive oxygen species for polyethylene terephthalate," Polymers for Advanced Technologies, vol. 22, no. 12, pp. 1872-1878, 2011.
[18] I. Sava, M. Bruma, B. Schulz, F. Mercer, V. Reddy, and N. Belomoina, "Synthesis and properties of silicon ‐ containing polyamides," Journal of applied polymer science, vol. 65, no. 8, pp. 1533-1538, 1997.
[19] B. M. A. Pizzi and W. Parsons, "Wood-induced catalytic activation of PF adhesives autopolymerization vs. PF/wood covalent bonding," Journal of Applied Polymer Science, vol. 52, no. 1, pp. 1847-1856, 1994.
[20] L. W. Jones, M. Byrne, J. Ciolino, "Revolutionary Future Uses of Contact Lenses," Optometry & Vision Science, vol. 93, no. 4, pp. 325-327, 2016.
[21] O. Wichterle and D. Lím, "Hydrophilic Gels for Biological Use," Nature, vol. 185, no. 4706, pp. 117-118, 1960.
[22] L. Hovgaard and H. Brondsted, "Dextran hydrogels for colonspecific drug delivery," Journal of Controlled Release, vol. 36, no. 8, pp. 159-166, 1995.
[23] A. J. Kuijpers, G. H. Engbers, T. L. Meyvis, "Combined Gelatin−Chondroitin Sulfate Hydrogels for Controlled Release of Cationic Antibacterial Proteins," Macromolecules, vol. 33, no. 10, pp. 3705-3713, 2000.
[24] M. Czerner, L. A. Fasce, J. F. Martucci, R. Ruseckaite, and P. M. Frontini, "Deformation and fracture behavior of physical gelatin gel systems," Food Hydrocolloids, vol. 60, no. 1, pp. 299-307, 2016.
[25] F. Yokoyama, I. Masada, K. Shimamura, T. Ikawa, and K. Monobe, "Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting," Colloid and Polymer Science, vol. 264, no. 7, pp. 595-601, 1986.
[26] D. W. Lim and T. G. Park, "Stereocomplex formation between enantiomeric PLA–PEG–PLA triblock copolymers: Characterization and use as protein-delivery microparticulate carriers,"Journal of Nanoparticle Research, vol. 75, no. 5, pp. 1615- 1623, 2000.
[27] W. R. Gombotz and S. F. Wee, "Protein release from alginate matrices," Advanced Drug Delivery Reviews, vol. 64, no. 31, pp. 194-205, 2012.
[28] Korsmeyer, Richard W., and Nikolaos A. Peppas, "Solute and penetrant diffusion in swellable polymers. III. Drug release from glassy poly (HEMA-co-NVP) copolymers." Journal of Controlled Release, vol. 1, no. 2, pp. 89-98, 1984.
[29] B. D. Ratner, A. S. Hoffman, "Synthetic hydrogel for biomedical application," ACS Symposium Series, vol. 31, no. 1, pp. 1-36, 1976.
[30] S. A. Barenberg, "Report of the Committee to Survey the Needs and Opportunities for the Biomaterials Industry," Journal of Biomedical Materials Research, vol. 16, no. 9, pp. 26-32, 1991.
[31] A. S. Hoffman, "Hydrogels for biomedical applications," Hydrogels for biomedical applications, vol. 64, no. 3, pp. 18-23, 2012.
[32] Oedley DG, Skelly PJ and Tighe BJ, "Hydrogels in Biomedical Applications," The British Polymer Journal, vol. 12, no. 3, pp. 99-110, 1980.
[33] Czerner M Fasce LA, Martucci JF Ruseckaite R and Fro ntini PM, "Deformation and fracture behavior of physical gelatin gel systems," Food Hydrocolloids, vol. 60, no. 2, pp. 299-307, 2016.
[34] Peppas NA. (Ed.), "Hydrogels in medicine and pharmacy," CRC Press, vol. 21, no. 2, 1989.
[35] Anzai J, Ueno A, Sasaki H, Shimokawa K and Osa T., "Photo-controlled Permeation of alkali cation through poly (vinyl chloride) crown ether membrane," Macromolecular Rapid Community, vol. 4, no. 11, pp. 697-751, 1983.
[36] I. V. Yannas, E. Lee, D. P. Orgill, E. M. Skrabut, and G. F. Murphy, "Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin," Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 3, pp. 933-937, 1989.
[37] Kodzwa MG, Staben ME, and Rethwisch DG, "Photoresponsive control of ion-exchange in leucohydroxide containing hydrogel membranes," Journal of Membrane Science, vol. 158, no. 1–2, pp. 85-92, 1999.
[38] T. A. Horbett, B. D. Ratner, J. Kost, and M. Singh, "A bioresponsive membrane for insulin delivery," in Recent Advances in Drug Delivery Systems: Springer, vol. 45, no. 4, pp. 209-220, 1984
[39] Chung DJ, Ito Y. and Imanishi Y. “An insulin-releasing membrane system on the basis of oxidation reaction of glucose,” J. Control. Release, vol.18, no. 3, pp.45-54, 1992.
[40] Vasilevskaya VV, Starodubtzev SG. and Khokhlov AR “Con-formational transitions in polymer gels: theory and experiment,” Adv.Polym. Sci, vol. 109, no. 1, pp.123-171, 1993.
[41] I. C. Kwon, Y. H. Bae, and S. W. Kim, "Electrically erodible polymer gel for controlled release of drugs," Nature, vol. 354, no. 6351, p. 291, 1991.
[42] T.M. Ong, W.-Z. Whong, J. Stewart, and H. E. Brockman, "Chlorophyllin: a potent antimutagen against environmental and dietary complex mixtures," Mutation Research Letters, vol. 173, no. 2, pp. 111-115, 1986.
[43] T. T. A. Mamada, D. Kungwatchakun, M. Irie, "Photoinduced phase transition of gels," Macromolecules,vol.23, no. 3, pp. 1517–1519, 1990.
[44] K. A. Polse, M. Decker, "Oxygen tension under a contact lens," Investigative Ophthalmology & Visual Science, vol. 18, no. 2, pp. 188-193, 1979.
[45] I. Sava, M. Bruma, B. Schulz, F. Mercer, V. Reddy, N. Belomoina, "Synthesis and properties of silicon-containing polyamides," Journal of Applied polymer science, vol. 65, no. 8, pp. 1533-1538, 1998.
[46] Y. Qiu and K. Park, "Environment-sensitive hydrogels for drug delivery," Advanced drug delivery reviews, vol. 53, no. 12, pp. 321- 339, 2001.
[47] A. Bajpai, S. K. Shukla, S. Bhanu, and S. Kankane, "Responsive polymers in controlled drug delivery," Progress in Polymer Science, vol. 33, no. 11, pp. 1088-1118, 2008.
[48] T. Coviello et al., "Novel hydrogel system from scleroglucan: synthesis and characterization," Journal of controlled release, vol. 60, no. 2, pp. 367-378, 1999.
[49] Ong TM, Whong W, Stewart J and Brockman HE, "Chlorophyllin: a potent antimutagen against environmental and dietary complex mixtures," Mutation Research Letters, vol. 173, no. 2, pp. 111-115, 1986.
[50] Kwon IC, Bae YH, and Kim SW, "Electrically erodible polymer gel for controlled release of drugs," Nature, vol. 354, no. 6351, pp. 291-293, 1991.
[51] Chung DJ, Ito Y. and Imanishi Y., "An insulin-releasing membrane system on the basis of oxidation reaction of glucose," Journal of Controlled Release, vol. 18, no. 6, pp. 45-54, 1992.
[52] Horbeet TA, Ratner BD, Kost J and Singh M., "A bioresponsive membrane for insulin delivery," Recent Advances in Drug Delivery System, pp.209-220, 1984.

QR CODE