簡易檢索 / 詳目顯示

研究生: 陳泰盛
Tai-sheng Chen
論文名稱: 硒化鋅奈米晶體之合成及其消光係數之探討
Synthesis ZnSe Quantum Dots and Research on Extinction Coefficient
指導教授: 陳良益
Liang-Yih Chen
口試委員: 戴 龑
Yian Tai
鍾宜璋
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 116
中文關鍵詞: 硒化鋅奈米晶體量子效率消光係數成長機制
外文關鍵詞: ZnSe quantum dots, quantum yield, extinction coefficient, growth mechanism
相關次數: 點閱:286下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文利用非配位法與配位法進行硒化鋅奈米晶體的成長,主要的參數有:成長溫度、表面活性劑種類與反應物之間的莫耳數比例等,經光譜性質分析與晶體結構分析後,獲得最佳化成長條件。於非配位法中,根據吸收光譜與激發光譜的分析可發現:光譜的半高寬值皆寬化且呈現非對稱。此外,硒化鋅奈米晶體粒徑變化於短時間即達到最大值;而在結構分析上呈現纖鋅礦結構,又因為表面缺陷過多,導致螢光量子效率僅約為1%。在配位法中,最佳化成長條件為:注入溫度/成長溫度為140℃/260℃,表面活性劑為十六胺,從激發光譜分析中顯示,光譜的半高寬值約為24nm並為一對稱光譜,由結構分析可知奈米晶體結構呈現閃鋅礦結構且型態為球狀,粒徑分佈也較均勻。但由於鋅反應物易氧化成氧化鋅,而使螢光量子效率約為2.5%。
在本研究中亦結合吸收光譜與感應耦合電漿原子發射光譜儀求得硒化鋅奈米晶體之消光係數與晶體粒徑的經驗關係式,以做為未來進行量子點光電元件時估計硒化鋅奈米晶體濃度之用。
最後本實驗利用成長時間與奈米晶體粒徑的變化關係,經成長機制模擬後,推測硒化鋅奈米晶體之成長機制為二階段Ostwald ripening成長模式,其活化能分別為99 J/mol與 128.65 2.1J/mol。


In this study, ZnSe nanocrystals were grown using non-coordinating and coordinating method with different growth temperature, surfactants and reactant molar ratio. In non-coordinating method, the optical properties of nanocrystals were analyzed by UV-Visible absorption spectroscopy and photoluminescence (PL) spectroscopy to achieve optimum growth parameters. According to UV-Visible and PL spectroscopy analysis, we can observe that the full widths of half-maximum (FWHM) were board and PL spectra were asymmetry. Additionally, the sizes of ZnSe naoncrystals arrived at a stable value in a short time. In structure analysis, the dominant structure of ZnSe nanocrystalline fabricating by non-coordinating method is wurtzite. Due to surface states existed in crystal, the quantum yield was only about 1%. In coordinating method, injection/growth temperatures were 140℃/260℃ and HDA was used as surfactant. In PL spectroscopy analysis, the FWHM of ZnSe nanocrystals was 24nm and spectrum is symmetry. From structure analysis, the shapes of ZnSe nanocrystals were spherical and the structures were zinc blend. The size distribution of nanocrystals was more uniform in coordinating method. However, the ZnO phase was easily formed during fabricating, the quantum yield was only 2.5%.
Herein, we also try to find the relationship between extinction coefficient per mole and crystal size combining with absorption spectroscopy and inductively-coupled plasma atomic emission spectroscopy (ICP-AES). The relation can be used to estimate the concentration of nanocrystals and be applied on the fabrication of light emitting devices.
Finally, we use the relationship between nanocrystals size and growth time to deduce the growth mechanism in coordinating method. We demonstrated that the growth mechanism of ZnSe nanocrystals in coordinating method belonged to Ostwald ripening model with two stages. The activation energies of first stage and second stage were 99 J/mol and 128.65 2.1J/mol, respectively.

中文摘要I 英文摘要II 致謝IV 目錄V 表目錄IX 圖目錄X 第一章、緒論1 1-1 奈米晶體簡介1 1-2 奈米晶體的特性 3 1-3 奈米粒子之應用 6 1-4 硒化鋅奈米晶體 7 1-5 實驗動機與目的 8 第二章、理論基礎與文獻回顧11 2-1 半導體材料分類 11 2-2 奈米半導體晶體之特性13 2-3 奈米半導體晶體製備方法18 2-3-1 物理方法18 2-3-2 化學方法19 2-4 螢光原理與量測 23 2-4-1 光激發螢光原理23 2-4-2 螢光量子效率量測27 2-5 消光係數30 2-6 Ⅱ-Ⅵ族奈米晶體31 2-7 奈米晶體成長機制33 第三章、實驗方法與步驟38 3-1 實驗流程38 3-2 實驗藥品39 3-3 實驗分析儀器45 3-4 實驗步驟與流程48 3-4-1 非配位法合成硒化鋅奈米晶體48 3-4-2 配位法合成硒化鋅奈米晶體49 3-5 材料性質分析50 3-5-1 螢光量子效率量測50 3-5-2 消光係數測定 51 3-5-3 穿透式電子顯微鏡分析52 3-5-4 X光薄膜繞射儀分析53 第四章、結果與討論54 4-1 非配位法合成硒化鋅奈米晶體與光學性質分析54 4-1-1 成長溫度效應於非配位法方法之光學性質探討54 4-1-2 表面活性劑效應於非配位法方法之光學性質探討55 4-1-3 硒化鋅奈米晶體於X光薄膜繞射分析56 4-1-4 硒化鋅奈米晶體於穿透式電子顯微鏡分析57 4-2配位法合成硒化鋅奈米晶體與光學性質分析64 4-2-1 莫耳比例效應於配位法之光學性質探討64 4-2-2 表面活性劑效應於配位法之光學性質探討65 4-2-3 成長溫度效應於配位法之光學性質探討67 4-2-4 硒化鋅奈米晶體於X光薄膜繞射分析68 4-2-5 硒化鋅奈米晶體於穿透式電子顯微鏡分析69 4-3 硒化鋅奈米晶體螢光量子效率之探討86 4-4 硒化鋅奈米晶體消光係數之探討95 4-5 硒化鋅奈米晶體成長機制105 第五章、結論110 第六章、參考文獻113

1.馬遠榮, 科學發展, 382, 72 (2004).
2.馬遠榮, 奈米科技, 商周出版社 (2003).
3.Chem. Tech.化工產業技術知識網, 奈米專覽-奈米結構與特性,
http//www.chemtech.com.tw/.
4.周靜怡, Ⅱ-Ⅵ族半導體奈米晶粒(量子點)之合成與光學性質分析, 國立交通大學碩士論
文(2002).
5.莊萬發, 超微粒子理論應用, 復漢出版社 (1995).
6.劉吉平, 奈米科學與技術, 世茂出版社 (2003).
7.Masanori Kikuchi, 圖解半導體, 世茂出版社 (2006).
8.Donald A. Neamen, Semiconductor Physics and Devices:basicprinciples, 3rd ed,
Mc-Graw Hill (2005).
9.William F. Smith, Foundations of Materials Science and Engineering, 3rd ed.
Mc-Graw Hill (2004).
10.R. Memming, Semiconductor Electrochemistry, 1st ed. Wiley-Vh, 264-274(2001).
11.D. R.Vij, N.Singh, Luminescence and Related Properties of Ⅱ-Ⅵ
Semiconductor, Novo Science Publishers (1998).
12.T. G. .Holger, Introduction to Semiconductorphysics, World Scientific
(1999).
13.D. A. Skoog, and D. M.West, Fundamentals of Analytical Chemistry, 6th ed,
Saunders College Publishing (1992).
14.A. Singh, X. Li, V. Protasenko, G.. Galantai, M. Kuno, H. Xing, and D.
Jena, Nano Lett. 7, 2999 (2007).
15.M. D. Fischbein, and M. Drndic, Appl. Phys. Lett. 86, 193106 (2005).
16.B. O. Dabbousi, M. G. Bowendi, O. Onitsuka, and M. F. Rubner, Appl. Phys.
Lett. 66, 1316 (1995).
17.K. S. Leschkies, R. Divakar, J. Basu, E. P. Emil, J. E. Boercker, C. B.
Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, Nano Lett. 7, 1973
(2007).
18.M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science,
281, 2013 (1998).
19.W. C. W. Chan, and S. Nie, Science, 281, 2016 (1998).
20.劉孝恒, 奈米材料化學, 五南圖書出版社 (2006).
21.王福明, 柰米材料技術, 五南圖書出版社 (2003).
22.B. Alperson, H. Demange, I. Rubinstein, andG. Hodes, J. Phys. Chem. B, 103,
4943 (1999).
23.J. L. Delpancke, J. Dille, J. Reisse, G. J. Long, A. Mohan, F. Grandjean,
Chem. Mater. 12, 946 (2000).
24.L. Rajeshwar, N. Myung, N. R. Tacconi, Electrochem. Commun. 1, 42 (1999)
25.羅吉中, 薄膜科技與應用, 金華出版社 (2005).
26.N. Kouklin, L. Menon, A. Z. Wong, D. W. Thompson, J. A. Woollam, P. F.
Williams, and S. Bandyopadhyay, Appl. Phys. Lett. 79, 4423 (2001).
27.J. Cheon, and J. I. Zink, J. Am. Chem. Soc. 119, 3838 (1997).
28.W. Tang, and D. C. Cameron, Thin Solid Films, 238, 83 (1994).
29.F. T. Quinlan, J. Kuther, W. Tremel, W. Knoll, S. Ribud, and P. Stroeve,
Langmuir, 16, 4049 (2000).
30.L. Manna, E. C. Scher, and A. P. Alivisatos, J. Am. Chem. Soc. 122, 12700
(2000).
31.M. A. Herman, D. Bimberg, J. Christen, J. Appl. Phys. 70, R1 (1991).
32.D. A. Skoog, F. J. Holler,T. A. Nieman, Principles of Instrumental
Analysis, 5th ed. (1998).
33.謝嘉民, 賴一凡, 林永昌, 枋志堯, 奈米通訊, 12, 28 (2005).
34.J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer
Academic/Plenum, New York (1999).
35.J. N. Demas, and G. A. Crosby, J. Phys. Chem. 75, 991 (1971).
36.Th. Förster, “Fluoreszenz Organisher Verbindungen”, Vandenhoeck-Ruprecht,
Göttingen, Germany (1951)
37.W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).
38.I. Moreels, K. Lambert, D. D. Muynck, F. Vanhaecke, D. Poelman, J. C.
Martins, G.. Allan, and Z. Hens, Chem. Mater. 19, 6101 (2007).
39.L. Brus, J. Phys. Chem. 90, 2555 (1986).
40.Y. Wang, and N. Herron, J. Phys. Chem. 95, 525 (1991).
41.A. P. Alivisatos, Science, 271, 933 (1996).
42.P. R. Yu, M. C. Beard, R. J. Ellingson, S. Ferrere, C. Curtis, J. Luiszer,
and A. Nozik, J. Phys. Chem.B, 109, 7084 (2005).
43.V. I. Klimov, A. A. Mikhailovsky, S. Xu, J. A. Hollingsworth, C. A.
Leatherdale, H. J. Eisler, M. G. Bawendi, Science, 290, 314 (2000).
44.L. S. Li, N. Pradhan, Y. Wang, and X. Peng, Nano Lett. 4, 2261 (2004).
45.N. Chestnoy, R. Hull, and L. E. Brus, J. Chem. Phys. 85, 2237 (1986).
46.G. Li, and M. Nogami, J. Appl. Phys. 75, 4276 (1994).
47.V. J. Leppert, S. H. Risbud, and M. J. Fendorf, Philos. Mag. Lett. 75, 29
(1997).
48.M. A. Hines, and P. G. Sionnest, J. Phys. Chem. B, 102, 3655 (1998).
49.A. B. Panda, S. Acharya, S. Efrima, and Y. Golan, Langmuir, 23, 765 (2007).
50.Xiaogang Peng, Adv. Mater. 15, 459 (2003).
51.J. Zhang, Y. Wang, J. Zheng, F. Huang, D. Chen, Y. Lan, G.. Ren, Z. Lin,
and C. Wang, J. Phys. Chem. B, 111, 1449 (2007).
52.D. V. Talapin, A. L. Rogach, M. Haase, and H. Weller, J. Phys. Chem. B,
105, 12278 (2001).
53.F. Huang, H. Zhang, and J. F. Banfield, Nano Lett. 3, 373(2003).
54.F. Huang, H. Zhang, and J. F. Banfield, J. Phys. Chem. B, 107, 10470(2003).
55.L. Qu, and X. Peng, J. Am. Chem. Soc. 124, 2049 (2002).
56.J. Yvon, A Guide to Recording Fluorescence Quantum Yields,
www.jyhoriba.co.uk.
57.S. A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K. R. Zavadil, W. O.
Wallace, D. Werder, and V. Klimov, J. Am. Chem. Soc. 129, 11708 (2007).
58.J. Aldana, Y. A. Wang, and X. Peng, J. Am. Chem. Soc., 123, 8844 (2001).
59.G. Allan and C. Delerue, Phys. Rev. B, 70, 245321(2004).

QR CODE