簡易檢索 / 詳目顯示

研究生: 黃文峰
Wen-feng Huang
論文名稱: ZnTPP之Langmuir-Blodgett薄膜製備及其光電效應之研究
Studies on the Langmuir-Blodgett thin film of ZnTPP and its photoelectric effect
指導教授: 劉進興
Chin-Hsin Liu
口試委員: 江志強
Jyh-Chiang Jiang
戴龑
Yian Tai
何國川
Kuo-Chuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 113
中文關鍵詞: Langmuir-Blodgett 法金屬紫質薄膜光電化學電池共敏化
外文關鍵詞: metalloporphyrin, LB technique, photoelectrochemical cell, cosensitization
相關次數: 點閱:228下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為兩個部份,第一部分為利用Langmuir-Blodgett 法沉積鋅紫質(ZnTPP)有機金屬紫質薄膜在ITO基板上,在第二部份中我們將有機金屬薄膜製備成有機光化學電池,以檢測有機金屬薄膜之光電化學性質,最後,因為鋅紫質(ZnTPP)吸收範圍主要在400nm-600nm的位置,我們混合CuPc以補足在長波長位置的吸收能力。
    因為ZnTPP分子結構並無明顯親水端,在將ZnTPP沉積在ITO機板時,不容易沉積成LB膜,所以在沉積雙數層時會有脫落現象的發生,我們發現改變鍍膜的速度可以減少脫落現象的發生,在轉移率與層數的關係圖中,我們發現改變製程後的轉移率由負值變為0 ,由轉移率對層數的關係圖中,可以知道,在這個製程下會沉積出Z-type LB膜。
    將ZnTPP沉積在ITO基板上後,製備成有機光化學電池(ITO/ZnTPP/electrolyte),以檢測其有機薄膜光電化學性質,我們首先改變層數及成膜壓力,發現光電壓、電流隨著層數增加,這是因為沉積在基板上的ZnTPP量增加,由UV光譜圖中我們可以看到,吸收度隨著層數增加而上升,但層數達到9層後維持穩定。光電壓、電流則隨著膜壓增加而減少。
    然後我們改變電解質溶液之pH值及濃度,分別使用HQ/BQ及Ascorbic acid兩個電解質系統,觀察光電壓、電流之趨勢。發現在濃度效應中,改變HQ/BQ中BQ的濃度,光電壓、光電流會隨著濃度增加而增加,應用能士特方程式以光電壓、光電流對濃度比值的對數值做圖,斜率為33.6mV、2.45μA。改變Ascorbic acid的濃度,光電壓、光電流會隨著濃度增加而減少,斜率為-145mV、-8.2μA。
    改變電解質溶液之pH值,發現光電壓隨著pH值下降,斜率分別為-26mV/pH、-22mV/pH,光電流在HQ/BQ系統中在pH=4時有一個最低點,Ascorbic acid系統中,在pH=7時有一個最高值。
    為改善吸收波長不寬廣之缺點,我們混合ZnTPP及CuPc,藉由共敏化之效應,以改善薄膜之吸收特性,並利用IPCE觀察混合後,光電轉換效率的變化,發現ZnTPP分子的IPCE由15%增加到40%,CuPc由1%增加到10%。


    This thesis consists of two parts. In part one, we studied the process of deposition of Zn tetraphenylporphrin (ZnTPP) thin films onto the ITO substrates by Langmuir-Blodgett technique. In part two, we studied the photoelectrochemical cell based on the ZnTPP thin films; the cosensitization of a mixed film of ZnTPP and a substituted copper phthalocyanine (4-cum)CuPc ) was also studied.
    The ZnTPP molecule is not amphiphilic, thus its π-A isotherm does not show clear phase transitions. The molecular cross section measurements indicate aggregation of ZnTPP, probably due to π-πor metal-π interactions. The Z-type transfer was observed for ZnTPP onto ITO, i.e. the positive transfer ratio was observed during the lifting of the ITO substrate from the water surface. The UV-Visible spectrum of the LB film shows the typical Soret band at 425 nm and the Q band at 550 nm. The absorbances were found to increase linearly with the number of layers, up to n=9.
    Photoelectric effects were observed for the photoelectrochemical cell (ITO/ZnTPP/electrolyte). We discovered that both the open-circuit voltage (Voc) and the short-circuit current (Isc) increase with the number of layers, up to n=9, and decrease with the surface pressure used to deposit the ZnTPP films.
    Two electrolyte systems, HQ/BQ and ascorbic acid, were used. For the HQ/BQ electrolyte, both Voc and Isc increase linearly with log([BQ]/[HQ]), the slopes are 33.6mV and 2.45μA, respectively. For the ascorbic acid electrolyte, both Voc and Isc decrease with log [ascorbic acid], the slopes are -145mV and 8.2μA, respectively.
    We also found that Voc decreases as pH increases, due to the shift of flatband potential of ZnTPP. The slopes are -26mV/pH and -22mV/pH, for HQ/BQ and ascorbic acid solutions, respectively.
    A mixed film of ZnTPP and CuPc were also used. The quantum efficiency measurements show that IPCE of the mixed film is 40% at ??? nm, while that of the pure ZnTPP is 15%, and the IPCE of the mixed film is 10% at ??? nm, while that of the pure CuPc is 1%. The enhancement of quantum efficiency due to cosensitization can be explained by the hetroaggregation in the mixed film.

    第一章 緒論 ...........................................................................................1 1.1簡介 ...............................................................................................1 1.2再生能源.........................................................................................2 2.1無機太陽能電池.............................................................................3 2.2有機太陽能電池.............................................................................4 2.3有機太陽能電池之結構.................................................................5 2.3.1單層有機太陽能電池..............................................................5 2.3.2雙層有機太陽能電池..............................................................6 2.3.3混合層有機太陽能電池..........................................................7 2.3.4薄片型有機太陽能電池..........................................................7 第二章 文獻回顧.....................................................................................9 2.1Langmuir-Blodgett簡介..................................................................9 2.1.1 Langmuir-Blodgett發展歷史回顧..........................................9 2.1.2 Langmuir-Blodgett單分子膜形成原理..................................9 2.1.3 Langmuir膜之相轉變............................................................11 2.1.4 Langmuir-Blodgett單分子之穩定性.....................................15 2.1.5 Langmuir-Blodgett 膜之製備................................................16 2.1.6 Langmuir-Blodgett之形式.....................................................18 2.2自組單分子膜(Self-Assembled Monolayer,SAM).......................21 2.3紫質的簡介.....................................................................................27 2.3.1紫質(porphyrin)分子結構及晶體結構...................................27 2.3.2紫質(porphyrin)LB膜之沉積..................................................29 2.4能帶理論.........................................................................................31 2.5 Mott-shottky plot............................................................................39 2.6交流阻抗分析................................................................................43 第三章 實驗方法....................................................................................45 3.1實驗藥品........................................................................................45 3.2實驗儀器設備................................................................................46 3.3實驗方法........................................................................................47 3.3.1.Langmuir-Blodgett沉積裝置.................................................47 3.3.2 ITO玻璃基板之清洗.............................................................48 3.3.3 Langmuir-Blodgett膜之沉積.................................................49 3.3.4光電流-電壓的量測...............................................................49 3.3.5電容-電壓的量測...................................................................50 第四章 結果與討論...............................................................................51 4.1鋅紫質(ZnTPP)之LB特性..........................................................51 4.1.2鋅紫質(ZnTPP)單分子層之鬆弛曲線..................................53 4.1.3鋅紫質單分子層之遲滯曲線................................................55 4.1.4沉積鋅紫質(ZnTPP)LB膜在ITO基板...............................57 4.2金屬紫質薄膜之光電效應............................................................61 4.2.1 Action spectra..........................................................................62 4.2.2膜壓效應.................................................................................64 4.2.3 LB層數效應...........................................................................66 4.3電解質濃度對光電壓光電流效應................................................69 4.3.1 Hydroquinone/Benzoquinone(HQ/BQ)濃度對光電壓、光電流效應..........................................................................................................69 4.3.2 Ascorbic acid(AsA)濃度對光電壓、光電流效應.................71 4.4電解質溶液pH效應.....................................................................73 4.4.1電解質溶液pH對平帶電位之效應......................................73 4.4.2電解質溶液pH對氧化還原電位之效應..............................75 4.4.3電解質溶液pH對光電壓之效應..........................................77 4.4.4電解質溶液pH值對光電流之效應......................................79 4.5光強度對光電性質之影響............................................................82 4.6混合薄膜........................................................................................84 4.6.1混合膜效應.............................................................................84 4.6.2共敏化效應.............................................................................86 4.6.3 I P C E...................................................................................88 第五章 結論............................................................................................90 第六章 參考文獻....................................................................................92

    【1】 大衛˙古斯丁 著,郭寶蓮 譯,“石油浩劫-文明的未來出路在哪裡”,商周(2004)
    【2】 莊嘉琛,“太陽能工程-太陽電池篇”,全華(1997)
    【3】 C.B.Hatfield,“Oil back on the global agenda.Permanent decline in global oil is virtually certain to begin within 20 years. ”,Nature.387,121(1997)
    【4】 D.M.Chapin,C.S.Fuller,G.L.Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical powder”,J. Appl. Phys.25,276,(1954)
    【5】 李永龍,“多功能單相三線式光伏能量轉換系統之研究”,國立成功大學電機工程研究所碩士論文,(1998)
    【6】 Dipl.Ing.Klaus Petritsch,“Organic Solar Cell Architectures”Cambridge and Graz,(2000)
    【7】 Gaines,G.L.and Jr.,“Insoluble Monolayers at Liquid-Gas Interface”,Wiley press:New York,Chapter 6(1966)
    【8】 Georgel G.Jr.,“On the History of Langmuir-Blodgett Film”,Thin solid film,99,ix-xiii(1983)
    【9】 Langmuir,I.“The Consition and Fundamental Properties of Solids and Liquids.ⅡLiquids.”,J.Am.Chem.Soc.,39,1848(1917)
    【10】 Ulman,A.,“An Introduction to Ultrathin Organic Films”,Academic Press,San Diego(1991)
    【11】 Neumann,A.W.,and Good,R.,J.Surface and Collid Science Vol.Ⅱ,Plenum,New York,1979
    【12】 Harkins ,W.D.,T.F.,Young,andE.Boyd,“The Thermodynamics of Films:Energy and Entropy of Extension and Apreading of Insoluble Monolayers”,J.Chem.Phys,8,95(1940)
    【13】 Girard-Egrot,A.P.,R.M.,Morelis,andP.R.,Coulet,“Dependence of Langmuir-Blodgett-Film Quality on Fatty-Acid Monolayer Integrity Crucil Effect of thr Removal Rate of Monolayer During Langmuir-Blodgett-Film Deposition,”Langmuir,9,3107(1993)
    【14】 李威達,”利用原子力顯微鏡分析DPPC/Albumin Langmuir-Schaefer與Langmuir-Blodgett膜的研究”,國立成功大學化學工程所碩士論文,台南,台灣(2004)
    【15】 Roberts,G.,“Langmuir-Blodgett films”,Plenum,New York(1990)
    【16】 Newman,R.D.,“Calcium Binding in stearic Acid Monomolecular Films,”J.Colloid Interface Sci.53,161(1975)
    【17】 Angelova,A.,F.Penacorade,B.Stiller,T.Zetzsche,andL.Brehmer,“Wettability,Surface Morphology,and Stability of Long-Chain Ester Multilayers Obtained by Different Langmuir-Blodgett Deposition Types”,J.Phys.Chem,98,6790(1994)
    【18】 Leonard,M.,R.M,Morelis and P.R.Coulet,“Linked Influence of pH and Cations on Fatty-Acid Monolayer Integrity Related to High-Quality Langmuir-Blodgett-Films”,Thin solid films,260,227(1995)
    【19】 Ester Xing,W.Shan,Y.Guo,D.Lu and T.S.Xi,“Mechanism of Iron Inhibition by stearic-acid Langmuir-Blodgett Monolayers Wettability,Surface-Morphology,and Stability of Long-Chain,”Corrosion,51,45(1995)
    【20】 Sagiv,J.,“Organized monolayer by adsorption.1.formation and structure of oleophobic mixed monolayer on solid surface”,J.Am.Chem.Soc.,102,92-98(1980)
    【21】 Ulman,A.“Formation and structure of self-assemble monolayers”,Chem.Rev.,96,1533-1554(1996)
    【22】 Brandriss,S and Margel.S.,“Synthesis and characterization of self-assembled hydrophobic monolayer coating on silica colloids”,Langmuir,9,1232-1240(1993)
    【23】 Gun,J. and J.Sagiv,“On the formation and structure of self-assembling monolayer”,J.Colloid Interface Sci.,112,457-472(1986)
    【24】 Mathauser,K.and Frank,C.W.,“Naphtjalene chromophore tethered in the constrained environment of a self-assembled monolayer”,Langmuir,9,,3002-3008(1993)
    【25】 Silberzan,P.,L.Leger,D.Ausserre and J.J.,Bemattar,“Silanation of silica surface.A new method of construsting pure or mixed monolayers”,Langmuir,7,1647-1651(1991)
    【26】 Schwartz,D.K.,S.Steinberg,J.Israelachvili and Z.A.N Zasadzinski,“Grouwth of a self-assembled monolayer by fractal aggregation”,Phys.Rev.Lett.,69,3354-3357(1992)
    【27】 Resch,R.,M.,G.F.Grasserbauer,Th.Vallant,H.Brunner,U.Mayer and H.Hoffmann,“In situ and exsitu AFM investigation of the formation of octadecylsiloxane monolayers”,Appl. Surface Sci.,168-175(1999)
    【28】 Wasserman,S.R.,Y.T.Tao,J.M.Whitesides,“Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrate”,Langmuir,5,1074-1087(1989)
    【29】 蔡怡杏“自聚性分子膜成膜動力學之臨界溫度研究”,國立台灣大學化學工程研究所碩士論文,台北,台灣(1999)
    【30】 Flinn,D.H.,Guzonas,D.A.,and Yoon,R.H.,“Characterization of Silica Surface Hydrophotobized by Octadecyltrichlorosilane,”Colloids Surf.A:Physiochem.Eng.Aspects,87,163(1994)
    【31】 Jentzen,W.,X.Z.Song and J.A.Shelnutt,“Structure Characterization of Synthestic and Protein-Bound Porphyrins in terms of the Lowest-Frequency Normal Coordinates of the Macrocycle”,J.Chin.Inst.Chem.Engrs.,29,6,415(1998)
    【32】 Barkigia,K.M.,M.D.Berber,J.Fajer,C.J.Medforth,M.W.Ronner and K.M.Smith,“Nonplanar porphyrins X-ray structure of(2,3,7,8,12,13,17,18-Octaethyl and Octamethyl-5,10,15,20-tetraphenyl-porphinato)zinc(Ⅱ) “,J.Am.Chem.Soc.,112,8851-8857(1990)
    【33】 Sparks,L.D.,C.J,Medforth,M.S.Park,J.R.Chamberlain,M.R.Ondrias,M.O.Senge,K.M.Smithc and J.A.Shelnutt,“Metal dependence of the nonplanar distortion of octaalkyltetraphenylporphyrin”,J.Am.Chem.Soc.,115,581-592(1993)
    【34】 Silvers,S.J.and A.Tulinsky,“The crystal and molecular structure of triclinic tetraphenylporphyrins”,J.Am.Chem.Soc.,89,3331-3337(1967)
    【35】 Fleischer,E.B.,C.K.Miller and L.E.Webb,“Crystal and molecular structure of some metal tetraphenylporphyrins,”J.Am.Chem.Soc.,86,2342-2347(1964)
    【36】 Tian,Y.,C.Wu and J.H Fendler,“Fluorescence activation and surface-state reactions of size-quantized cadmium sulfide particles in Langmuir-Blodgett films”,Journal of Physical Chemistry,98,4913(1994)
    【37】 Wang,H.S.,X.P.Wang,R.Z.Jin ands.Q.Xi,Chin,J.Appl.Chem.10,87,(1993)(in chinese)
    【38】 Wang,H.S.,X.P.Wang,R.Z.Jin ands.Q.Xi,Chin,J.Appl.Chem.10,87,(1995)(in chinese)
    【39】 Messerschmidt,C.,A.Schulz,J.P.Rabe,A.Simon,O.Marti,J.H.Fuhrhop,“Formation of Stable Singularities in Mixed Monolayers of Porphyrins and Tetracosanoic Acid upon SFM Tapping”,Langmuir,16,1299(2000)
    【40】 Salleh,M.M.and M.Y.Akrajas,“Optical Sensing of Capsicum Aroma using Four Porphyrins Derivatives thin films”,Thin Solid Film,417,162-165(2002)
    【41】 Wrighton,M.S.,“Photochemistry,”C&EN,3,29(1979)
    【42】 Bard,A.J.,“Photochemistry,”Science,207,139(1980)
    【43】 Morrison,S.R.,“Study of Semiconductors using Electrochemical Techniques,“Journal of Vaccum Technology,15,1417(1978)
    【44】 Dewald,J.F.,“The Charge Distribution at the Zinc-Oxide-Electrode Interface,”Journal of Physical Chemistry Solid Pergamon Press,14,155(1960)
    【45】 Klofta,T.J.,“The modification of Electrochemical and Photoelectrochemical Properties in Thin Films of Tri.and Tetra Metal Phthalocyanines,”The University of Arizona,Ph.D.(1986)
    【46】 Klofta,T.J.,“The modification of Electrochemical and Electrochemical and Photoelectrochemical Properties in Thin Films of Tri.and Tetravalent Metal Phthalocyanines, ”The University of Arizona,Ph.D.(1986)
    【47】 A.J.Bard and L.R.Faulkner,“Electrochemical methods:fundamentals and applications,2nd ed.,p.371”,John Wiley& Sons,Inc.,New York(2001)
    【48】 He,Jin-An.and Linne.Samuelson,“Photoelectric Properties of Oriented Bacteriorhodopsin/Polycation Multilayers by Electrostatic Layer by Layer Assembly”,J.Phys.Chem.(1998)
    【49】 Kennedy,J.H and K.W.Frese,“Flatband Potentials and Donor Densities of Polycrystalline α-Fe2O3 Determined from Mott-Schottky Plots,”Journal of Electrochemical Society,5,125(1978)
    【50】 蔡惠榕,“鋅紫質/二十碳酸混合Langmuir-Blodgett膜之製備及其對胺類之氣體感測特性”,國立台灣科技大學化學工程研究所碩士論文,台北,台灣(2005)
    【51】 Robertson.Neil,“Optimizing Dyes for Dye-Sensitized Solar Cells”,Angew.Chem.Int.Ed.,2338-2345(2006)

    QR CODE