簡易檢索 / 詳目顯示

研究生: 林建宇
Chien-Tu Lin
論文名稱: 雙模式升壓型功率因數修正器最佳化設計
Design Optimization of a Dual-Mode Boost-Type Power Factor Corrector
指導教授: 邱煌仁
Huang-Jen Chiu
羅有綱
Yu-Kang Lo
口試委員: 劉益華
Yi-Hua Liu
歐勝源
Sheng-Yuan Ou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 75
中文關鍵詞: 功率因數修正器雙模式控損耗分析
外文關鍵詞: power factor corrector, dual-mode control, and power loss analysis
相關次數: 點閱:276下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要提出一升壓型功率因數修正器(Power Factor Corrector, PFC)新型控制電路,目的是使升壓型PFC同時可操作在邊界電流導通模式(Bundary Conduction Mode, BCM)和連續電流導通模式(Continuous Conduction Mode, CCM)。
    邊界導通模式升壓型PFC之功率晶體為零電流導通,其導通時之切換損耗(Switching Loss)為零;但電路在邊界導通模式下電感電流峰值較大,此特性會造成功率級元件之導通損耗(Conduction Loss)增加,當負載越重時損耗越大。而連續導通模式升壓型PFC的輸出二極體有逆向恢復電流,導致功率晶體在導通時之切換損耗增加,當負載越輕載時此現象越明顯;但電路操作在連續導通模式下電感電流峰值電流較小,此特性使電路在重載時功率級元件之導通損耗較小。所以本論文提出一新型控制電路,使功率因數修正器在輕載時操作於邊界導通模式,重載時操作於連續導通模式,結合了上述兩個不同導通模式之優點,也消除各自之缺點。
    本論文先就兩導通模式之功率因數修正器作損耗分析,計算出各個負載下之效率分布,因此可找出雙模式升壓型功率因數修正器的最佳轉態點。最後實際製作一300W雙模式升壓型功率因數修正器,以實驗驗證論文中所提之分析與設計考量是否合理。經測量結果證明輕載下確實操作於邊界導通模式而減少切換損耗;而重載下確實操作於連續導通模式而減少導通損耗。


    The main purpose of this thesis is to propose a new control method for a boost-type power factor corrector (PFC). The presented PFC is operated under boundary conduction mode (BCM) at lighter loads and continuous conduction mode (CCM) at heavier loads.
    The MOSFET is turned on with zero current, and thus zero switching loss, when the PFC is operated under BCM. However, the peak inductor current is higher and therefore the conduction loss increases as the load gets heavier. On the other hand, the output diode has reverse recovery phenomenon that results in a higher switching loss when the PFC is operated under CCM. This problem is more obvious as the load decreases. Nevertheless, under CCM, the peak inductor current is smaller and the conduction losses are smaller, too. A novel dual-mode PFC controller is proposed in this thesis, with BCM operations at light loads and CCM operations at heavy loads, to take the advantages and improve the disadvantages of both modes.
    First the loss distributions of the PFC at various load levels for both BCM and CCM are analyzed. Therefore, a most suitable transition point can be found to switch between the two control modes. A 300-W dual-mode boost-type PFC prototype is built to verify the circuit analysis and design considerations. Experimental results show that the studied PFC actually operates under BCM at light loads to reduce the switching loss, and under CCM at heavy loads to reduce the conduction loss.

    摘 要 i Abstract ii 誌 謝 iii 目 錄 iv 圖表索引 vi 第一章 緒論 1 1.1 研究背景 1 1.2 內文編排方式 2 第二章 功率因數修正原理 3 2.1 功率因數與總諧波失真之定義 3 2.2 升壓型功率因數修正器之電路架構 6 2.3 功率因數修正器控制模式 7 第三章 雙模式升壓型功率因數修正器控制原理分析 13 3.1 邊界導通模式升壓型功率因數修正器 13 3.2 連續導通模式升壓型功率因數修正器 16 3.3 雙模式升壓型功率因數修正器 18 第四章 雙模式升壓型功率因數修正器最佳化設計 22 4.1 邊界導通模式升壓型功率因數修正器損耗分析 22 4.2 連續導通模式升壓型功率因數修正器損耗分析 33 4.3 雙模式升壓型功率因數修正器最佳化設計與分析 40 第五章 實際電路設計流程與實驗結果 44 5.1 L6561接腳介紹及內部方塊圖 44 5.2 雙模式升壓型功率因數修正器設計 45 5.2.1 功率級元件設計 46 5.2.2 外加自製控制電路參數設計 47 5.3 實驗結果與波形 51 第六章 結論與未來展望 60 6.1 結論 60 6.2 未來展望 61 參考文獻 62

    [1] A. l. Pressman, “Switching Power Supply Design,” McGraw-Hill, Inc., 1998.
    [2] 洪瑞鴻,「2kW功率因數修正器研製」,國立臺灣科技大學電子工程系研究所碩士論文,民國94年。
    [3] 宋自恆、林慶仁,「功率因數修正器之原理與常用元件規格」,新電子科技雜誌217期,民國93年4月。
    [4] N. Mohan, T. M. Undeland, and W. P. Robbins, “Power Electronics Converters, Applications and Design,” John Wiley & Sons, 3rd Edition, 2003.
    [5] Sangsum Kim and Prasad N. Enjeti, “A Modular Single-Phase Power Factor Correction Scheme With a Harmonic Filtering Function,” IEEE Transactions on Industrial Electronics, Vol. 50, No. 2, pp.328-335, April. 2003.
    [6] 許元豪,「徹底剖析工作於連續導通模式下升壓型PFC 線路中高壓快速恢復二極管所導致的五種功率損耗模式」,電子月刊UPS/SPS資訊電源專輯–PFC技術–電源品質保證,2008年2月。
    [7] J. Luo, “New PFC Solution for the Future ICE1PCS01/02,” Infineon Power Seminar, 16th Sep 2004, Singapore.
    [8] 張厚升,「功率因數(PFC)校正技術的新型控制技術的優缺點對比」,電源世界,2007 年9 月。
    [9] B. P. Divakar, and D. Suanto, “A New Boost Power Factor Pre-Regulator,” IEEE Proc. PEDS’99, vol. 2, pp. 915-920, 1999.
    [10] C. A. Canesin, and I. Barbi, “Analysis and Design of Constant-FrequencyPeak-Current-ControlledHigh-Power-Factor Boost Rectifier with Slope Compensation,” APEC '96., Vol. 2, pp. 807-813, March 1996.
    [11] Chen Zhou, “Active Boost Power Factor Analysis and Design,” IBM Corporation, April 20, 1989.
    [12] M. F. Schlecht, and B. A. Miwa, “Active Power Factor Correction for Switching Power Supplies,” IEEE Transactions on Power Electronics, Vol 1. PE-2, No. 4. October 1987.
    [13] 曾軍皓,「高效能功率因數修正器研製」,國立台灣科技大學電子工程系研究所碩士論文,民國95年。
    [14] Abraham I. Pressman, Keith Billings, and Taylor Morey, “SWITCHING POWER SUPPLY DESIGN,” 3rd Edition, 2009.
    [15] ST Microelectronics, “L6561, ENHANCED TRANSITION MODE POWER FACTOR CORRECTOR,” Application Note AN966.
    [16] ST Microelectronics, “EVAL6562-375W Evaluation Board L6562-based375W FOT-controlled PFC Pre-regulator,” Application Note AN1895.
    [17] ST Microelectronics, “Solution for designing a 400 W fixed off-time controlled PFC pre-regulator with the L6562A,”Application Note AN2782.
    [18] ST Microelectronics, “DESIGN OF FIXED - OFF - TIME - CONTROLLED PFC PRE-REGULATORS WITH THE L6562,” Application Note AN1792.
    [19] R. B. Ridley, “A New Continuous-Time Model for Current-Mode Control with Constant Frequency, Constant On-Time and Constant Off-Time, in CCM and DCM,” IEEE Power Electronics Specialists Conference Record, San Antonio, Texas, pp. 382-389, 1990.
    [20] C. Adragna, S. De Simone, G. Gattavari, “New Fixed Off-Time PWM Modulator Provides Constant Frequency Operation in Boost PFC Pre-regulators,” IEEE Power Electronics, Electrical Drives, Automation and Motion, 2008.
    [21] ST Microelectronics, “400 W FOT-controlled PFC pre-regulator with the L6563S,” Application Note AN2994.
    [22] 宋自恆、閻松駿,「主動式功率因數修正器之電感設計方式及雜訊對策徹底剖析」,新電子科技雜誌第240 期.2006 年3 月號。
    [23] ON Semiconductor, “Power Factor Correction Stages Operating in Critical Conduction Mode,”Application Note AND8123/D.
    [24] Robert W. Erickson, Dragan Maksimovic, “Fundamentals of Power Electronics,” 2nd Edition, 2000.
    [25] Christophe P. Basso, “SWITCH-MODE POWER SUPPLIES, SPICE Simulations and Practical Designs,” 1st Edition, 2008.
    [26] ST Microelectronics, “L6561, POWER FACTOR CORRECTOR,” Data Sheet, 2003.
    [27] M. F. Schlecht, and B. A. Miwa, “Active Power Factor Correction for Switching Power Supplies,” IEEE Transactions on Power Electronics, Vol 1. PE-2, No. 4. October 1987.
    [28] Chen Zhou, “Active Boost Power Factor Analysis and Design,” IBM Corporation, April 20, 1989.

    QR CODE