簡易檢索 / 詳目顯示

研究生: 馬嘉隆
Jia-long Ma
論文名稱: 化學迴圈程序之複合鐵鎳金屬載氧體製備
Preparation of Composite Ni-Fe Oxide as Oxygen Carrier for Chemical Looping Combustion Process
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧 洋
Young Ku
郭俞麟
Yu-lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 174
中文關鍵詞: 化學迴圈程序複合金屬鐵鎳氧化物載氧體
外文關鍵詞: chemical looping combustion process, nickel-iron composite oxide, oxygen carrier
相關次數: 點閱:296下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究之目的在於製備化學迴圈程序用之高活性載氧體,選取硝酸鎳以及硝酸鐵作為前驅物,以部分因素實驗設計法(factorial fractional design)對5個主要影響實驗之變因(水量、鍛燒溫度、分散劑含量、硝酸鎳含量、硝酸鐵含量)進行探討,藉由溶膠凝膠法(sol-gel method)製備出16組複合金屬氧化物。
以熱重分析儀(TGA)進行複合金屬載氧體的反應性測試。以X光繞射儀(XRD)、場發射掃描式電子顯微鏡(FESEM)、能量散射光譜儀(EDS)與比表面積量測儀(BET)進行載氧體反應前後的材料特性分析。TGA測試結果顯示,將硝酸鎳與硝酸鐵以1:3莫耳比混合,並添加3 g的聚乙二醇(PEG)作為分散劑,於15 mL的去離子水中含浸後,再於1000°C下鍛燒6小時所得的載氧體,其整體反應性最佳。分析16組載氧體的反應性測試結果,得知前驅物硝酸鎳含量為影響載氧體反應性的主要因素。根據此測試結果,針對硝酸鎳含量進行單一實驗變因分析,得知載氧體的最佳製備參數為Ni(NO3)2:150 mmol、 Fe(NO3)3:30 mmol、鍛燒溫度:1000°C、PEG:3 g以及H2O:15 mL,而此載氧體亦同時具有純氧化鐵與氧化鎳的優點,且其還原速率較純氧化鎳快。
多重循環還原氧化反應測試結果顯示,未添加多孔性材料作為擔體的載氧體均有聚集之現象產生。載氧體以濕式含浸法(wet impregnation method)擔載於擔體後,其反應性與熱穩定性均有顯著的提升,可作為具實用性之載氧體。


In this research, a highly active oxygen carrier for chemical looping combustion (CLC) process was developed with using nickel and iron nitrate as precursors, respectively. Effects of the preparation variables on the oxidation and reduction activities of composite oxygen carriers were systematically examined using the fractional factorial design (FFD). The following preparation parameters were investigated in the present FFD analysis: amount of water, calcination temperature, amount of dispersant, amount of nickel nitrate, and amount of iron nitrate. Sixteen kinds of Ni-Fe composite oxygen carrier were prepared by sol-gel method according to the preparative conditions of FFD.
Reactivities of oxygen carrier were evaluated in a thermogravimetric analyzer (TGA). The effects of the preparation parameters on the structure, and physicochemical properties of the composite oxygen carriers were elucidated by X-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), and Brunarer-Emmett-Teller (BET) adsorption. The most active sample was obtained under these conditions: 0.01 mol of Ni(NO3)2, 0.03 mol of Fe(NO3)3, 3 g of PEG, 15 mL of water, and calcination at 1000°C for 6 h. The analysis of variance table (ANOVA) indicate the effect of amount of nickel nitrate is the key factors influencing the redox activity of composite oxygen carrier.
According to the results, the optimal amount of Ni/Fe molar ratio, 5, was further found to obtain an oxygen carrier with high reduction and oxidation activities. The agglomeration of oxygen carrier resulted in the decrease of activity. After the immobilization of composite oxygen carrier on a porous ceramic filter, the thermal stability of oxygen carrier was enhanced greatly and could be used in CLC process practicably.

摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 X 第一章 前言 1 1.1 化學迴圈程序 1 1.2 載氧體 3 1.3 部分因素實驗設計 4 1.3-1 實驗設計名詞介紹 4 1.3-2 FFD計算介紹 5 1.4 研究動機 7 第二章 文獻回顧 9 2.1 以含浸法製備載氧體 9 2.2 以溶膠凝膠法製備載氧體 23 2.3 使用商用或天然載氧體 27 2.4 以噴霧法製備載氧體 31 2.5 其餘化學迴圈程序參考文獻 35 第三章 研究方法 38 3.1 實驗規劃 38 3.2 實驗流程 40 3.3 實驗藥品及材料 41 3.4 實驗儀器 41 3.5 藥品配製 44 3.5-1製備複合鐵鎳金屬載氧體粒子 44 3.5-2將複合鐵鎳金屬載氧體粒子擔載於擔體 44 3.6 實驗步驟 45 3.6-1 熱重分析儀 45 3.6-2 固定床反應器 45 3.6-3 X光繞射儀 45 3.6-4 場發射掃描式電子顯微鏡 46 3.6-5 比表面積量測儀 46 第四章 結果與討論 47 4.1 部分因素實驗設計法 47 4.1-1 反應性分析-熱重分析儀 47 單一循環還原氧化反應 47 多重循環還原氧化反應 64 4.1-2 材料特性分析-X光繞射儀 65 單一循環還原氧化反應 65 多重循環還原氧化反應 73 4.1-3 材料特性分析-場發射掃電子顯微鏡 75 單一循環還原氧化反應 75 多重循環還原氧化反應 78 4.1-4 材料特性分析-比表面積量測儀 81 4.2 單一實驗變因分析 82 4.2-1 反應性分析-熱重分析儀 82 4.2-2 材料特性分析-X光繞射儀 83 4.2-3 材料特性分析-場發射掃描式電子顯微鏡 88 4.2-4 綜合比較-樣品7與樣品e 92 4.3 部分因素實驗設計法-燃料:合成氣 93 4.3-1 反應性分析-熱重分析儀 93 單一循環還原氧化反應 93 4.3-2 材料特性分析-X光繞射儀 102 單一循環還原氧化反應 102 4.3-3 材料特性分析-場發射掃電子顯微鏡 110 單一循環還原氧化反應 110 4.4 綜合比較-合成氣與甲烷 114 4.4-1. TGA測試結果 114 4.4-2. FBR測試結果 115 4.4-3. 綜合結論 118 4.5 反應機制之探討 119 4.5-1. 反應氣體流率固定,探討反應氣體濃度與反應溫度對反應機制 的影響-還原階段 120 4.5-2 反應氣體流率固定,探討反應溫度與反應氣體濃度對反應機制 的影響-氧化階段 126 4.5-3. 反應氣體濃度固定,探討反應溫度與反應氣體流率對反應機制 的影響-還原階段 132 4.5-4. 反應氣體濃度固定,探討反應溫度與反應氣體流率對反應機制 的影響-氧化階段 138 4.5-5. 綜合比較 144 4.5-6. 反應溫度對載氧體反應性之影響 146 第五章 結論與未來展望 152 5.1 以部分因素實驗設計法探討實驗變因對載氧體反應性之影響 152 5.2 提高反應溫度對樣品7進行多重循環還原氧化反應的影響 153 5.3 探討單一實驗變因(硝酸鎳含量)對載氧體反應性之影響 153 5.4 綜合比較-合成氣與甲烷 154 5.5 反應機制探討 154 5.6 未來展望 155 第六章 參考文獻 157

[1] Shulman, A., Linderholm, C., Mattisson, T., and Lyngfelt, A., “High reactivity
and mechanical durability of NiO/NiAl2O4 and NiO/NiAl2O4/MgAl2O4 oxygen
carrier particles used for more than 1000 h in a 10 kW CLC reactor” Industrial
and Engineering Chemistry Research 15 (2009) 7400-7405.
[2] Gayán, P., Dueso, C., Abad, A., Adanez, J., de Diego, L.F., García-Labiano, F.,
“NiO/Al2O3 oxygen carriers for chemical-looping combustion prepared by
impregnation and deposition-precipitation methods” Fuel 88 (2009) 1016-1023.
[3] de Diego, L.F., Ortiz, M., García-Labiano, F., Adánez, J., Abad, A., Gayán, P.,
“Hydrogen production by chemical-looping reforming in a circulating fluidized
bed reactor using Ni-based oxygen carriers” Journal of Power Sources 192 (2009)
27-34.
[4] Mattisson, T., Järdnäs, A., Lyngfelt, A., “Reactivity of some metal oxides
supported on alumina with alternating methane and oxygen-Application for
chemical-looping combustion” Energy and Fuels 17 (2003) 643-651.
[5] Wang, M. L., Tseng, Y. H., “Analysis of Phase-Transfer-Catalyzed O-Alkylation
Reaction Using Fractional Factorial Design Method” Chemical Engineering
Communications 192 (2005) 557-574.
[6] Jin, H., Okamoto, T., Ishida, M., “Development of a novel chemical-looping
combustion: Synthesis of a solid looping material of NiO/NiAl2O4” Industrial
and Engineering Chemistry Research 38 (1999) 126-132.
[7] Readman, J.E., Olafsen, A., Smith, J.B., Blom, R., “Chemical looping
combustion using NiO/NiAl2O4: Mechanisms and kinetics of reduction -
Oxidation (Red-Ox) reactions from in situ powder X-ray diffraction and
thermogravimetry expirements” Energy and Fuels 20 (2006) 1382-1387.
158
[8] Jin, H., Ishida, M., “Reactivity study on natural-gas-fueled chemical-looping
combustion by a fixed-bed reactor.” Industrial and Engineering Chemistry
Research 41 (2002) 4004-4007.
[9] de Diego, L.F., Ortiz, M., Adánez, J., García-Labiano, F., Abad, A., Gayán, P.,
“Synthesis gas generation by chemical-looping reforming using a Ni-based
oxygen carrier” Energy Procedia 1 (2009) 3-10.
[10] Zhao, H. B., Liu, L. M., Xu, D., Zheng, C. G., Liu, G. J., Jiang, L. L.,
“NiO/NiAl2O4 oxygen carriers prepared by sol-gel for chemical-looping
combustion fueled by gas” Journal of Fuel Chemistry and Technology 36 (2008)
261-266.
[11] Siriwardane, R., Tian, H., Richards, G., Simonyi, T., Poston, J.,
“Chemical-Looping Combustion of Coal with Metal Oxide Oxygen Carriers”
Journal of Energy and Fuels 23 (2009) 3885-3892.
[12] Mohammad M. H., David L., Jose H., De Lasa H. I., “Nicked on
lanthanum-modified γ-Al2O3 oxygen carrier for CLC: Reactivity and stability”
Catalysis Today 143 (2009) 179-186.
[13] Gayán, P., Dueso, C., Abad, A., Adanez, J., de Diego, L.F., García-Labiano, F.,
“NiO/Al2O3 oxygen carriers for chemical-looping combustion prepared by
impregnation and deposition-precipitation methods” Fuel 88 (2009) 1016-1023.
[14] Gnanapragasam N.V., Reddy B.V., Rosen M.A., “Hydrogen production from
coal using coal direct chemical looping and syngas chemical looping combustion
systems: Assessment of system operation and resource requirements”
International Journal of Hydrogen Energy 34 (2009) 2606-2615.
[15] Rubel, A., Liu, K., Neathery, J., Taulbee, D., “Oxygen carriers for chemical
looping combustion of solid fuels” Fuel 88 (2009) 876-884.
159
[16] Shulman, A., Linderholm, C., Mattisson, T., Lyngfelt, A., “High reactivity and
mechanical durability of NiO/NiAl2O4 and NiO/NiAl2O4/MgAl2O4 oxygen
carrier particles used for more than 1000 h in a 10 kW CLC reactor” Industrial
and Engineering Chemistry Research 48 (2009) 7400-7405.
[17] Jerndal E., Mattisson T., Thijs I., Snijkers F., Lyngfelt A., “NiO particles with Ca
and Mg based additives produced by spray- drying as oxygen carriers for
chemical-looping combustion” Energy Procedia 1 (2009) 479-486.
[18] 朱敬平, “化學迴圈燃燒技術發展概況簡介” 中興工程季刊, 第110期, 2011
年1月, 63-72
[19] 黎正中,陳源樹,實驗設計與分析,高立圖書有限公司(2008)
[20] He, F., Wang, H., Dai, Y., “Application of Fe2O3/Al2O3 Composite Particles as
Oxygen Carrier of Chemical Looping Combustion” Journal of Natural Gas
Chemistry 16 (2007) 155-161.
[21] de Diego, L.F., Ortiz, M., García-Labiano, F., Adánez, J., Abad, A., Gayán, P.,
“Hydrogen production by chemical-looping reforming in a circulating fluidized
bed reactor using Ni-based oxygen carriers” Journal of Power Sources 192 (2009)
27-34.
[22] Kuusik, R., Trikkel, A., Lyngfelt, A., Mattisson, T., “High temperature behavior
of NiO-based oxygen carriers for chemical looping combustion” Energy
Procedia 1 (2009) 3885-3892

無法下載圖示 全文公開日期 2016/07/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE