簡易檢索 / 詳目顯示

研究生: 許崴棋
Wei-Chi Hsu
論文名稱: 異價離子共摻雜對氧化鋯與氧化鈰之晶體結構與導電性質之影響
The relationship between crystal structure and electrical conductivity cations co-doped zirconia / ceria
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 蔡大翔
Dah-Shyang Tsai
黃炳照
Bing-Joe Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 131
中文關鍵詞: 導電率氧化鈰氧化鋯
外文關鍵詞: ceria, zirconia, conductivity
相關次數: 點閱:374下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

固態氧化物燃料電池電解質材料,主要以螢石結構材料之導氧材料為主。氧化鋯基與氧化鈰基電解質為常被使用之電解質之ㄧ,故本文以此兩種材料系統作為我們研究探討方向。
首先對氧化鋯基材料研究以不同離子半徑之三價陽離子(RE=Yb3+, Er3+, Y3+, Dy3+, Y3+Nd3+, Sm3+, Nd3+)與五價陽離子(Nb5+)共摻雜於氧化鋯(3Y)中,探討對氧化鋯相變機制、機械及導電的性質之影響。藉XRD分析添加物添加對氧化鋯(3Y)之晶格參數與正方性(c/a)變化,了解相變溫度變化,且由SEM觀察顯微結構之晶粒大小,以及利用交流阻抗分析儀溫度在300℃~800℃區間量測三價與五價陽離子共摻雜於氧化鋯電解質中對電性之影響。研究結果顯示平均離子半徑越大的陽離子氧化物添加於氧化鋯(3Y)中,其t相的c/a值越大,且造成t-to-m相變溫度的提升。而當平均陽離子半徑超過臨界尺寸 =0.855Å時,便很容易有t-to-m發生,導致其機械性質降低;實驗顯示添加RENbO4會使氧化鋯(3Y)韌性的提升,優於本身氧化鋯(3Y-TZP)的機械性質,由於可以承受熱反覆的熱疲勞應力,故可以應用於固態氧化物燃料電池(SOFC)電解質間歇高溫操作上,以延長電池的壽命;但在電性的分析中發現,添加RENbO4於氧化鋯(3Y)中會因Nb的添加使導電性下降,主要原因由於添加之Nb其lattice binding energy(330 eV)過大且造成部分氧空缺消耗,使得導電性下降。
利用氧化鋯基材料系統的導電性的概念來對氧化鈰基材料作研究,藉由摻雜二價離子中lattice binding energy 較小的鍶離子與三價釤離子共摻雜於氧化鈰中,藉由硬球殼模型計算發現三價釤與二價鍶共摻雜於氧化鈰中所形成的氧空缺半徑各不相同,分別為1.20Å與0.935Å,且氧空缺半徑不受摻雜濃度所影響。而針對單一摻雜不同三價陽離子半徑來作討論,發現氧空缺半徑大小會受摻雜元素而改變,且在導電性與氧空缺半徑大小作比較,氧空缺半徑愈大,使結構中有更寬的通道,而導電性有隨之增加趨勢。Ce0.8-xSm0.2SrxO1.9-x導電率隨溫度增加而增加,且摻雜量x =0.02時擁有最佳的導電率,此時在電解質中氧空缺含量為理想值,而在800℃導電率為0.0610(S•cm-1)高於SDC(Ce0.8Sm0.2O1.9)之導電率0.0371(S•cm-1)一倍;尤其在低溫範圍時Ce0.78Sm0.2Sr0.02O1.88導電性更高於SDC,可知考慮鍵結能與離子大小及適當共摻雜氧空缺產生元素能有效提升氧化鈰導電之特性。


Fluorite structure based ionic conductors are the major electrolyte materials in Solid Oxide Fuel Cells (SOFC). In this thesis, ZrO2-based and CeO2-based electrolytes are the research topics, and we shall build a material design criterion for SOFC electrolytes in this research.
Firstly, we co-dope trivalent ions (RE) with different ionic radius (RE=Yb3+, Er3+, Y3+, Dy3+, Nd3+, Sm3+) and pentavalent ions (Nb5+) into 3Y-ZrO2, and investigate the relations among phase transformation mechanism, mechanical property and conductivity. We study variation of structural and transformation characteristics by analyzing the lattice parameters and tetragonality (c/a) of specimens using X-ray diffraction, evaluate microstructural evolution by SEM observation, and measure the electrical properties of specimens with trivalent and pentavalent ions co-doping into ZrO2(3Y) by an AC impedance analyzer. Experimental results show that the c/a of t-phase of doped ZrO2(3Y) becomes larger resulting in increase of the t-to-m transformation temperature when the oxides with larger average-ion radius are added into ZrO2(3Y). Furthermore, when the average-cation radius exceeds the critical value =0.855Å, t-to-m transformation leads to degradation the decrease of mechanical property of materials. Experimental results show that adding RENbO4 into 3Y-ZrO2 enhances specimen toughness, which is superior to that of 3Y-ZrO2. Being able to sustain the thermal-fatigue stress during thermal cycling, it can be used as electrolytes of SOFC during high temperature operation and prolong the life of the cell. However, results from impedance analysis show that conductivity of RENbO4-doped 3Y-ZrO2 decreases due to too large lattice binding energy of Nb2O5 and oxygen vacancy depletion induced by Nb5+ doping.
We take the concepts of doping-conductivity relationship built in ZrO2-based material system to design CeO2-base material system. By co-doping divalent ion Sr2+ and trivalent ion Sm3+ ,whose lattice bind energy are both comparativively small into CeO2 ,we found that the radius of oxygen vacancy formed by divalent and trivalent-doped specimens is different from the calculation from the Hard-Sphere model. The former is 1.2Å and the later is 0.935Å, respectively. In addition, radius of the oxygen vacancy is independent of dopant concentration. When comparing different radius of trivalent ions, we find out that different dopants generate oxygen vacancies with different radius. Larger radius of the oxygen vacancy produces wider conducting channels in the structure, and therefore conductivity increases in the specimen. The conductivity of Ce0.8-xSm0.2SrxO1.9-x becomes higher as temperature increases, and the specimen with concentration x=0.02 possesses the highest conductivity, which corresponding to the ideal concentration of oxygen vacancy in the electrolyte. The conductivity of the specimen at 800℃(0.0610 S cm-1) is twice higher than that of SDC (Ce0.8Sm0.2O1.9 ,σ=0.0371 S cm-1), and the difference is even larger at low temperature region. We conclude that co-doping with appropriate divalent and trivalent dopant concentration effectively promote the conductivity of the specimens.

第一章 緒論……………………………………………………………1 第二章 文獻回顧………………………………………………………5 2-1. 固態氧化物燃料電池簡介……………………………....……..5 2-2. 電解質基本傳導原理………………………………..……..…..8 2-3. 氧化鋯電解質…………………………………………………10 2-3-1. 氧化鋯之相變…………………………………………10 2-3-2. 氧化鋯基材料之機械性質……………………………17 2-3-3. 氧化鋯導電特性………………………………………23 2-4. 氧化鈰電解質…………………………………………………33 2-4-1. 氧化鈰結構特性………………………………………33 2-4-2. 氧化鈰導電特性………………………………………35 2-5. 交流阻抗原理…………………………………………………43 第三章 實驗方法……………………………………………………..51 3-1. 實驗粉末、材料………………………………………………51 3-2. 實驗儀器規格…………………………………………………53 3-3. 實驗流程………………………………………………………55 3-4. 試片製備………………………………………………………56 3-4-1. 粉末製備………………………………………………56 3-4-2. 成型……………………………………………………57 3-4-3. 燒結……………………………………………………57 3-5. 試片的量測……………………………………………………58 3-5-1. 粉末粒徑之分析………………………………………58 3-5-2. 密度之量測……………………………………………58 3-5-3. X-ray繞射分析…………………………………………60 3-5-4. 破裂韌性試片…………………………………………60 3-5-5. DSC示差掃描熱量測定………………………………62 3-5-6. SEM表面影像分析……………………………………62 3-5-7. EDS元素分析…………………………………………62 3-5-8. 電性之分析……………………………………………62 3-6. 實驗數據………………………………………………………67 第四章 添加RENbO4於ZrO2(3Y)對其相變、機械及導電特性之影響………………………………………………………68 4-1. RENbO4添加於ZrO2(3Y)對相分佈影響………………………68 4-2. RENbO4添加於ZrO2(3Y)對破裂韌性之影響…………………74 4-3. RENbO4添加於ZrO2(3Y)對顯微結構之影響…………………78 4-4. 三價陽離子(RE3+)與五價鈮離子(Nb5+)共摻雜於於ZrO2(3Y)對 離子導電率之影響…………………………………..…………86 第五章 三價釤(Sm3+)與二價鍶離子(Sr2+)共摻雜對氧化鈰電解質之影響……………………………………………………………..94 5-1. Sm3+與Sr2+共摻雜於CeO2之熱處理分析……………..……….95 5-2. Sm3+與Sr2+共摻雜於CeO2之晶格常數分析………………….100 5-3. 二價Sr2+與三價Sm2+陽離子共摻雜於氧化鈰之顯微組織…105 5-4. 二價Sr2+與三價Sm2+陽離子氧化物共摻雜於氧化鈰之導電性 分析……………………………………………………………107 第六章 結論…………………………………………………………118 參考文獻………………………………………………………………122

1.K. Eguchi, “Ceramic materials containing rare earth oxides for solid oxide fuel cell”, J. Alloys. Compds., 250, 486-491 (1997).
2.T. Inoue, T. Setoguchi, K. Eguchi. and H. Arai. "Study of a Solid Oxide Fuel Cell with a Ceria-Based Solid Electrolyte." Solid State Ionics. 35, 285-91 (1989).
3.H. Yahiro. Y. Baba. K. Eguchi. and H. Arai. "High-Temperature Fuel Cell with Ceria-Yttria Solid Electrolyte." J. Electrochem. Soc., 135, 2077-80 (1988).
4.W. Weppner,” Tetragonal zirconia polycrystals — a high performance solid oxygen ion conductor ,” Solid State Ionics 52, 15-21 (1992).
5.K. Kobayashi, H. Kuwajima and T. Masaki,” Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing ,” Solid State Ionics 3/4, 489-493 (1981).
6.D.j. Kim, H.J. Jung, D.H. Cho, “Phase transformation of Y2O3 and Nb2O5 doped tetragonal zirconia durinf low temperature aging in air.” Solid State Ionics 80, 67-73 (1995).
7.J.T.S Irvine, D. P. Fagg, J.Labrincha, F.M.B. Marques, Catalysis Today 38, 467-472 (1997) .
8.N. Q. Minh, High-Temperature Fuel Cells. Part 2: The Solid Oxide Cells, CHEMTECH, 21,120-26 (1991).
9.Advances in Ceramics. Vol. 3, Science and Technology of Zircoma. Edited by A. H. Heuer and L. W. Hobbs. American Ceramic Society. Columbus, OH. (1981).
10.Advances in Ceramics, Vol. 12. Science and Technology of Zirconia II. Edited by N. Claussen, M. Rühle, and A. H. Heuer. American Ceramic Society, Columbus, OH, (1984).
11.A. H. Heuer and M. Ruhle “ On the nucleation of the martensitic transformation in zirconia” Acta Metall. 33(12), 2101-2112 (1985).
12.M. Ruble and A. H. Heuer “Phase transformation in ZrO2 containing ceramics”, The martensitic reaction in t-ZrO2” Advance in ZrO2 vol. 12, Science and technology of ZrO2. Edited by N. Claussen, M. Ruhle, and A. H. Heuer. American Ceramic Society, Columbus, OH, (1984).
13.A. G. Evans and R. M. Cannon, “Toughening of brittle solids by martensitic transformations”, Acta metal , 34 [5], 761-800 (1986).
14.F. F. Lange, "Transformation toughening: Part 5: Effect of temperature and alloy on fracture toughness", J. Mater. Sci., 17, 255-62 (1982).
15.R. P. Ingel, D. Lewis, B. A. Bender, and R. W. Rice, “Physical, microstructural, and thermomechanical properties of ZrO2 single crystals”, pp.408-14 in Advances in ceramics, Vol. 12, Science and technology of Zirconia II. Edited by N. Claussen, M. Ruhle, and A. H. Heuer. American ceramic society, Clumbus, OH, (1984).
16.R. P. Ingel, D. Lewis, B. A. Bender, and R. W. Rice, “Temperature dependence of strength and fracture toughness of ZrO2 single crystals”, J. Am. Ceram. Soc., 65 [9], C-150-C-152 (1982).
17.D. Michel, L. Mazerolles, and M. Perez y Jorba, “Fracture of metastable tetragonal zirconia crystals”, J. Mater. Sci., 18, 2618-28, (1983).
18.Science and Technology of Zirconia III, S. Somiya, N. Yamamoto, and H. Yanagida (eds.), American Ceramic Society, Westerville, OH, (1998).
19.M. Yoshimura, “Phase Stability of Zirconia,” American Ceramic Society Bulletin., 67 (12), 1950-1955 (1988).
20.F. Frey, H. Boysen, and T. Vogt, “Neutron Powder Investigation of the Monoclinic to Tetragonal Phase Transformation in Undoped Zirconia,” Acta Crystallogr. B, 46, 724-730 (1990).
21.E. C. Subbarao, H. S. Maiti, and K. K. Srivastava, “Martenstic Transformation in Zirconia,” Phys. Status Solid A, 21 [9], 9-40 (1974).
22.P. Aldebert and J. P. Traverse, “Structure and Ion Mobility of Zirconia at High Temperature,” J. Am. Ceram. Soc., 68 [1], 34-40 (1985).
23.J. D. McCullough and K. N. Trueblood, “The Crystal Structure of Baddeleyite (Monoclinic ZrO2),” Acta Crystallogr., 12 [7], 507-511 (1959).
24.D. K. Smith and H. Newkirk, “The Crystal Structure of Baddeleyite (Monoclinic ZrO2) and its Relation to the Polymorphism of ZrO2,” Acta Crystallogr., 18 [6], 983-991 (1965).
25.G. Teufer, “The Crystal Structure of Tetragonal ZrO2,” Acta Crystallogr., 15 [11], 1187 (1962).
26.M. Yoshima, T. Noma, N. Ishizawa, and M. Yoshimura, “Effects of Noncompositional Inhomogeneity on t-m Phase Transformation during Grinding of Various Rare-Earth-Doped Zirconias,” J. Am. Ceram. Soc., 74 [12], 3011-3016 (1991).
27.M. Yoshimura, M. Yoshima, T. Noma, and S. Somiya, “Formation and Phase Stability of Tetragonal Phase in Rapidly Quenched ZrO2-ErO1.5 ,” Jpn. J. Appl. Phys., 27 [9], L2757-1760 (1988).
28.D. J. Kim, “Effect of Ta2O5, Nb2O5, and HfO2 Alloying on the Transformability of Y2O3-Stabilized Tetragonal ZrO2,” J. Am. Ceram. Soc., 73 [1], 115-150 (1990).
29.T. Hirata, E. Asari, and M. Kitajima, “Infrared and Raman Spectroscopic Studies of ZrO2 Polymorphs Doped with Y2O3 or CeO2,” J. Solid State Chem., 110, 201-207 (1994).
30.M.Yashima , T.Hirose, M.Kakihana, Y.’suzuki, and M. Yoshimura, “Size and Charge Effect of Dopant M on the unit cell Parameters of Monoclinic Zirconia Solid Solution Zr0.98M0.02O2-8 (M= Ce, La, Nd, Sm, Y, Er, Yb, Sc, Mg, Ca)” J. Am. Ceram. Soc., 80[1], 171-75 (1997).
31.P.Li, I.W.Chen, and J.E.Penner-Hahn, “Effect of Dopants on Zirconia Stablization-An X-Ray Absorption Study:I, Trivalent Dopants”, J. Am. Ceram. Soc., 77[1], 118-28 (1994).
32.C. Quinn, and R. Wusirika, “Twinning in YNbO4,” J. Am. Ceram. Soc., 74[2], 431-32 (1991).
33.http://www.chemistry.ohio-state.edu/~woodward/ch754/CaWO4.htm
34.G. J. Mccarthy, ”X-ray studies of RENbO4 compound” , Acta Cryst. B27, 2285 (1971).
35.P.Li, I.W.Chen, and J.E.Penner-Hahn, “Effect of Dopants on Zirconia Stablization-An X-Ray Absorption Study:III, Charge- Compensating Dopants”, J. Am. Ceram. Soc., 77[5], 1289-95 (1994).
36.A. G. Evans. “The New High-Toughness Ceramics”: p. 267-91 in Fracture Mechanics: Perspective and Directions (Twentieth Symposium), ASTM STP 1020. Edited by R. P. Wei and R. P. Gangloff. American Society for Testing and Materials. Philadelphia. PA, (1989).
37.J. P. Singh, A. L. Bosak, D. W. Dees. and C. C. McPheeters, “Improved Fracture Toughness of ZrO2 Electrolyte for Solid Oxide Fuel Cell”: p. 145-48 in 1988 Fuel Cell Seminar Abstracts (Long Beach, CA, Oct. 23-26, 1988). Courtesy Associates, Washington, DC. (1988).
38.F. Ishizaki. T. Yoshida, and S. Sakurada, “Effect of Alumina Addition on the Electrical Properties of Yttria-Doped Zirconia”: p. 3-14 in Proceedings of the First international Symposium on Solid Oxide Fuel Cells. Edited by S. C. Singhal. The Electrochemical Society, Pennington, NJ. (1989).
39.M. T. Hernandez, J. R. Jurado, and P. Duran, “Effect of Alumina Additions on the Electrical Properties of ZrO2-Y2O3 and ZrO2-Y2O3-CeO2 Electrolytes”, 421-28 (1992).
40.O. Yamamoto. Y. Takeda, N. Imanishi. T. Kawahara, G. Q. Shen, M. Mori. and T. Abe, “Electrical and Mechanical Properties of Zirconia-Alumina Composite Electrolyte”, 437-44 (1993).
41.W. Weppner, “Tetragonal Zirconia for Solid Oxide Fuel Cells”: p. 83-89 in proceeding of the international Symposium on Solid Oxide Fuel Cells. Edited by O. Yamamoto. M. Dokiya, and H. Tagawa. Science House. Tokyo, Japan (1990).
42.T. Yoshida, T. Hoshina, I. Mukaizawa. and S. Sakurada. “Properties of Partially Stabilized Zirconia Fuel Cell.” J. Electrochem. Soc., 136, 2604-606 (1989).
43.O. Yamamoto. Y. Takeda. R. Kanno. and K. Kohno, “Electrical Conductivity of' Tetragonal Stabilized Zirconia.” J. Mater. Sci., 25, 2805-808 (1990).
44.T. Sato and M. Shimada. “Crystalline Phase Changes in Yttria-Partially-stabilized Zirconia by Low-Temperature Annealing.” J. Am. Ceram. Soc., 67 [10], C-212-C-213 (1984).
45.E. C. Subbarao and H. S. Maiti. “Oxygen Sensors and Pumps,” J. Am. Ceram. Soc., 731-47 (1988).
46.A. N. Vlasov and M. V. Perfiliev, “Ageing of ZrO2-Based Solid Electrolytes.” Solid Stale Ionics, 25, 245-53 (1987).
47.游文獻,” 二氧化鋯添加鈮酸釔之燒結行為與韌化機構探討”,台灣科技大學機械工程技術研究所碩士論文,民國86年6月。
48.Y. Suzuki and T. Takahashi, denki Kagaku, 39 ,406 (1971).
49.M. A. C. G. van de graaf and A. J. Burggraaf, in Science and Technology of Zirconia II, N. Claussen, M. Rühle, and A. H. Heuer (eds.), American Ceramic Society, Columbus, OH, 744 (1984).
50.J. E. Bauerle,” Study of solid electrolyte polarization by a complex admittance method ,” J. Phys. Chem. Solids, 30 ,2657-2670 (1969).
51.E. J. L. Schouler, Ph. D. Thesis, Institut National Polytechnique de Grenoble, Grenoble, France, (1979).
52.T. Takahashi, H. Iwahara, and Y. Suzuki, Denki Kagaku, J. Phys. Chem. Solids ,39 665 (1971).
53.B. C. H. Steele, in High Conductivity Solid Ionic Conductor, Recent Trends and Applications, T. Takahashi (ed.), World Scientific, Singapore, 402 (1989).
54.J. F. Baumard and P. Abelard, in Science and Technology of Zirconia II, N. Claussen, M. Rühle, and A. H. Heuer (eds.), American Ceramic Society, Columbus, OH , 555 (1984).
55.Y. Suzuki and T. Takahashi, J. Chem. Soc. Jpn, 1610 (1997).
56.N. H. Anderson, K. Claussen, M. A. Hackett, W. Hayes, M. T. Hutchings, J. E. Macdonald, and R. Osborn, in Transport-Structure Relations in Fast Ion and Mixed Conductor, F. W. Poulsen, N. H. Anderson, K. Clausen, S. Skaarup, and O. T. Sørensen (eds.), Risø National Laboratory, Roskilde, Denmark, p. 279 (1985).
57.A. Nakamura and J. B. Wagner, Jr., ” Defect Structure, Ionic Conductivity, and Diffusion in Yttria Stabilized Zirconia and Related Oxide Electrolytes with Fluorite Structure ,” J. Electrochem. Soc., 133 ,1542-48 (1986).
58.Y. Suzuki and K. Sugiyama, J. Ceram. Soc. Jpn. Intl. Ed., 95 ,480 (1987).
59.E. C. Subbarao, in Science and Technology of Zirconia II, N. Claussen, M. Rühle, and A. H. Heuer (eds.), American Ceramic Society, Columbus, OH, p. 1 (1981).
60.J. H. Park and R. N. Blumenthal, “, Electronic Transport in 8 Mole Percent Y2O3-ZrO2” J. Electrochem. Soc., 136 2867 (1989).
61.J. Kaspar, P. Fornasiero, and M. Graziani, Catal. Today, 50, 285-298 (1999).
62.N. Izu, T. Omata and S. Otsuka-Yao-Matsuo, J. Alloys. Compds., 270, 107-114 (1998).
63.T. Omata, H. Kishimoto, S. Otsuka-Yao-Matsuo, N. Ohtori, and N. Umesaki, J. Solid State Chem., 147, 673-583 (1999).
64.D. J. M. Bevan and J. Kordis, J. Inorg. Nucl. Chem., 26, 1509-1523 (1964).
65.S. P. Ray, A. S. Nowick and D. E. Cox, J. Solid State Chem, 15, 344-351 (1975).
66.R. D. Shannon, “Effective ionic radii in oxides and fluorides,” Acta Cryst., B25, 925-946 (1969).
67.A. V. Virkar, "Theoretical Analysis of Solid Oxide Fuel Cells with Two-Layer Composite Electrolyte: Electrolyte Stability." J. Electrochem. Soc., 138, 1481-87 (1991).
68.H. Yahiro, T. Ohuchi, K. Eguchi and H. Arai, “Electrical Properties and microstructure in the System Ceria-alkaline Earth Oxide,” J. Mater. Sci., 23, 1036 (1988)
69.H. Yahiro, K. Eguchi and H. Arai, ” Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell,” Solid State Ionics, 36, 71 (1989).
70.H. Yahiro, Y. Eguchi, K. Eguchi and H. Arai, “ Oxygen Ion Conductivity of the Ceria-Samarium Oxide System with Fluorite Structure,” J. Appl. Electrochem.,18, 527 (1988).
71.D. J. Kim, “Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide (M = Hf4+, Zr4+, Ce4+, Th4+, U4+) solid solutions,”J. Am. Ceram. Soc. 72, 1415 (1989).
72.V. Butler, C. R. A. Catlow, B. E. F. Fender and J. H. Harding,” Dopant ion radius and ionic conductivity in cerium dioxide,” Solid State Ionics, 8, 109-113 (1983).
73.J.V. Herle, D. Seneviratne, A.J. McEvoy, ” Lanthanide co-doping of solid electrolytes: AC conductivity behaviour ,” J. Eur. Ceram. Soc. 19, 837-841 (1999).
74.J.M. Ralph, J. Przydatek, J.A. Kilner, T. Seguelong, “Novel doping systems in ceria,” Ber. Bunsen-Ges. Phys. Chem. 101, 1403 (1997).
75.H. Yoshida, T. Inagaki, K. Miura, M. Inaba, Z. Ogumi, “Density functional theory calculation on the effect of local structure of doped ceria on ionic conductivity ,”Solid State Ionics 160, 109-116 (2003).
76.H. Yoshida, H. Deguchi, K. Miura, M. Horiuchi, “Investigation of the relationship between the ionic conductivity and the local structures of singly and doubly doped ceria compounds using EXAFS measurement ,”Solid State Ionics 140, 191-199 (2001).
77.H. Yamamura, E. Katoh, M. Ichikawa, K. Kakinuma, T. Mori, H. Haneda, “Multiple doping effect on the electrical conductivity in the (Ce1-x-yLaxMy)O2-d (M = Ca, Sr) system,” Electrochemistry 68, 455 (2000).
78.F. Y. Wang, S. Chen and S. Cheng, “Gd3+ and Sm3+ co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells”, Electrochemistry Communications, 6, 743–746 (2004).
79.J. Ross Macdonald, “Impedance Spectroscopy : Emphasizing Solid Materials and System,”John Wiley & Sons, Inc., (1987).
80.黃鼎漢,”以低溫水熱法合成奈米級釤及鉍摻雜鈰系固態氧化物燃料電池電解質與其電化學性質之研究”,台灣科技大學材料科技研究所碩士論文,民國93年6月。
81.謝孟儒,” 摻雜之鑭鉬氧化物作為固態氧化物燃料電池電解質的製備與材料性質”, 台灣科技大學材料科技研究所碩士論文,民國93年6月。
82.葉金瓚,”氧化鋯基電解質離子導電性之研究”, 台灣科技大學機械工程技術研究所碩士論文,民國92年6月。
83.X. Guo and Z. Wang, “Effect of Niobia on the Defect Structure of Yttria-stabilized Zirconia,”J. Eur. Ceram. Soc., 18, 237-240 (1998).
84.A. Trovarelli, “Structural Properties and Nonstoichiometric Behavior of CeO2,” Catalysis by Ceria and Related Materials, 15-50 (2002).
85.Lide and David, “CRC Handbook of Chemistry and Physics: Ed. 71”, Boca Raton: CRC Press, (1990).
86.K. Eguchi, T. Setoguchi, T. Inoue, and H. Arai, “Electrical properties of ceria-based oxides and their application to solid oxide fuel cells ,”Solid State Ionics, 52, 165-172 (1992).
87. F.Y. Wang, S. Chen, Q. Wang, S. Yu and S. Cheng,“Study on Gd and Mg co-doped ceria electrolyte for intermediate temperature solid oxide fuel cells,” Catalysis Today, 97, 189-194 (2004).
88.J. M. Ralph, J. Przydatek, J. A. Kilner and T. Seuelong, “Novel doping systems in ceria,” Ber. Bunsenges Phys. Chem., 101, 1403 (1997).
89.E. D. Wachsman,“Effect of oxygen sublattice order on conductivity in highly defective fluorite oxides,” J. Eur. Ceram. Soc., 24, 1281–1285 (2004).
90.S. A. Degtyarev and G. F. Voronin, ”Zh. Fiz. Khim., Zirconia – Yttria Binary Phase Diagram,” 61 [3] 617-622 (1987); Russ. J. Phys. Chem. (Engl. Transl.), 61 [3] 320-323 (1987).
91.R. S. Roth and L. W. Coughanour, “System ZrO2-Nb2O5 Binary Phase Diagram,” J. Research, Natl. Bur. Standards, 55 [4] 212 (1955); RP2621.
92.Hong, S. J. and Virkar, A. V., Lattice parameters and densities of rare-earth oxide doped ceria electrolytes. J. Am. Ceram. Soc., 78, 433–439 (1995).

無法下載圖示 全文公開日期 2006/07/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2006/07/02 (國家圖書館:臺灣博碩士論文系統)
QR CODE