簡易檢索 / 詳目顯示

研究生: 秦英傑
YING-CHIEH CHIN
論文名稱: 雙圓弧與直線連結奈米流道之建模及實驗驗證
Simulation Model Establishment and Experimental Verification of two Arc Nanochannel with linked Straight-line Nanochannel
指導教授: 林榮慶
ZONE-CHING LIN
口試委員: 王國雄
Kuo-Shong Wang
傅光華
KUANG-HUA FUH
許覺良
Chung-Liang Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 184
中文關鍵詞: 圓弧奈米流道垂直奈米流道原子力顯微鏡兩道次偏移加工法
外文關鍵詞: arc nanochanel, vertical nanochanel, atomic force microscope (AFM), two cutting passes offset machining method
相關次數: 點閱:297下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文前半部分為整合直線段及1/4圓弧曲線加工的微奈米流道,故本文提出加工直線段連結1/4圓弧之奈米流道梯型凹槽到預定寬度及預定深度的模擬模式及公式。本文先利用比下壓能公式及兩道次偏移加工法,進一步推導出加工直線段奈米流道梯型凹槽到預定寬度及預定深度所需的前述各項加工參數的相關公式及模擬模式。在連接圓弧曲線加工時,由於AFM機台只能進行微小直線段加工,故本文推導出應用圓弧曲線與微小線段的弦高誤差的計算公式,進而提出模擬計算出由多個微小線段連結而成的近似圓弧曲線的方法。
本文用模擬模式計算所得的探針總偏移量,各切削層的切削道次及兩切削道次間的探針偏移量、底部凸起值,及各切削層的各切削道次的下壓力,和近似圓弧的各微小線段的數目及各微小線段的長度,去進行原子力顯微鏡(AFM)實驗加工到預定寬度及預定深度的整合直線段加工及圓弧加工的奈米流道梯型凹槽。本文並推導出進行量測時,針對近似於圓弧曲線的微小線段 量測斷面所需的直線方程式,以及量測斷面的方法。最後並量測AFM實驗加工所得之結果,驗證本文所提出的模擬模式及公式為合理可接受。
本文後半部為整合兩個1/2圓弧奈米流道上及一個垂直直線奈米流道加工為到預定寬度及預定深度的奈米流道。本文提出形狀堆疊觀念,在兩個1/2圓弧流道上堆疊上一個垂直直線奈米流道,推導出加工直線段奈米流道梯型凹槽到預定寬度及預定深度所需的各項加工參數的相關公式及模擬模式。本文的形狀堆疊觀念為將計算出的垂直直線奈米流道的第一切削道次,垂直直線奈米流道的第一切削道次和上方1/2圓弧奈米流道的第一切削道次與第二切削道次的偏移量相同,故垂直直線奈米流道的第一切削道次的偏移量會跟1/2圓弧奈米流道第一切削道次以及第二切削道次間的偏移量Pnc相同;而且1/2圓弧的圓形頂部的微小線段長剛好為垂直直線奈米流道的加工長度CL,並且圓形頂部的微小線段長CL的弦高誤差也小於我們所設立的0.5nm。在連接1/2圓弧微小直線段加工時,由於AFM機台只能進行為微小整數nm單位微小的直線段加工,故本文推導出應用圓弧曲線與微小線段的弦高誤差的計算公式,進而提出模擬計算出由多個微小線段連結而成的近似圓弧曲線的方法。本文加工兩個1/2圓弧奈米流道時,先加工第一切削層,再加工第二切削層,把兩個1/2圓弧奈米流道加工到預定深度30nm。然後再僅用一個切削層即可加工垂直奈米流道到預定深度30nm。
因為垂直直線奈米流道的各切削道次進行偏移量加工時,垂直直線奈米流道的前三個切削道次以及後面六個切削道次在移除垂直直線奈米流道的體積時,有跟1/2圓弧已切削到預定深度的移除體積相交,所以我們需要在每當偏移一個偏移量Pn的切削道次時,就需要改變一次下壓力,並且使其加工深度到預定深度30nm,且可使底部上凸值小於設定值0.5nm。故經過模擬以後可看出垂直直線奈米流道只需要一個切削層便可以直接加工到預定深度30nm,所需下壓力也不會超過我們所設立最大值91.33μN 便能直接把垂直直線奈米流道加工到預定深度30nm。本文也提出應用較小下壓力可去除垂直直線奈米流道的微小凸起側邊的方法。
其為沿著垂直直線奈米流道的各加工長度的起始點和終點所連接線段進行垂直直線的加工,其微小下壓力會造成垂直直線奈米流道的垂直線的側邊深度略微增加側邊,但此微小下壓力的大小要控制使增加的深度小於0.54nm,則可使微小的凸起側邊消除變成垂直直線的側邊。本文也提出針對整合兩個1/2圓弧奈米流道及一個垂直直線奈米流道進行AFM量測實驗時的量測斷面方法及所需的直線方程式。
最後並量測AFM實驗加工所得之結果,驗證本文所提出整合兩個1/2圓弧奈米流道及一個垂直直線奈米流道到預定寬度及預定深度的模擬模式和公式及AFM實驗加工方法為合理可接受的。綜上所述,本文具有學術創新性及應用價值。


The first half part of this paper is about tiny nanochannel machined by integrating straight line segments with 1/4-arc curve. Hence, the paper proposes the simulation model and equation for machining of nanochannel trapezium groove, with straight line segments connecting with 1/4arc, to the expected width and expected depth. The paper firstly uses specific down force energy (SDFE) equation and two cutting passes offset machining method to further derive the related equation and simulation model of the various aforesaid machining parameters required for machining of straight line segment nanochannel trapezium groove to the expected width and expected depth. When connecting arc curve for machining, since atomic force microscope (AFM) machine can perform tiny straight line segment machining only, the paper derives a calculation equation that applies the chord height tolerance between arc curve and tiny line segment, and further proposes a method for simulated calculation of a quasi-arc curve formed by connecting multiple tiny line segments.
The paper uses the total offset amount of probe obtained from calculation by simulation model, the cutting passes on each cutting layer and the probe offset amount between two cutting passes, the value of the protruding height value at the bottom, downward force of each cutting pass on each cutting layer, number of tiny line segments of quasi-arc, and length of each tiny line segment, to conduct AFM experimental machining of nanochannel trapezium groove, with straight line segment machining integrated with arc machining, to the expected width and expected depth. The paper, while carrying out measurement, and focusing on tiny line segments of quasi-arc curve, also derives a straight line equation required for measurement of cross-section as well as the method for measurement of cross-section. Finally, the paper measures the results obtained from AFM experimental machining to verify that the simulation model and equation proposed by the paper are rational and acceptable.
The second half part of the paper is about integration of two 1/2-arc nanochannels with a vertical straight-line nanochannel for machining of a nanochannel to the expected width and expected depth. The paper suggests a shape stacking concept, in which a vertical straight-line nanochannel is stacked on two 1/2-arc nanochannels, and then derives the related equations and simulation model of different machining parameters required for machining of straight line segment nanochannel trapezium groove to the expected width and expected depth. Regarding the paper’s shape stacking concept, based on the calculated 1st cutting pass of vertical straight-line nanochannel, the offset amount of the 1st cutting pass of vertical straight-line nanochannel as well as the offset amounts of the 1st cutting pass and the 2nd cutting pass of the 1/2-arc nanochannel on the upper part are all the same. Therefore, the offset amount of the 1st cutting pass of vertical straight-line nanochannel is the same as the offset amounts Pnc of the 1st cutting pass and the 2nd cutting pass of the 1/2-arc nanochannel.
Besides, when the length of the tiny line segment on the 1/2 arc’s circular top is exactly the same as the machined length CL of the vertical straight-line nanochannel, and the chord height tolerance of the tiny line segment’s length CL on the circular top is also smaller than the length 0.5nm originally set by us. When the 1/2 arc’s tiny straight line segments are connected for machining, since AFM machine can only perform machining of tiny straight line segments in tiny integer and unit nm, the paper derives a calculation equation that applies the chord height tolerance between the arc curve and the tiny line segment, and then proposes a method for simulated calculation of a quasi-arc line formed by connection of multiple tiny line segments. During machining of two 1/2-arc nanochannels, the paper firstly conducts machining on the 1st cutting layer, and then machining on the 2nd cutting layer, for machining of two 1/2-arc nanochannels to the expected depth 30nm. After that, the paper conducts machining of a vertical nanochannel to the expected depth 30nm by only using a cutting layer.
During offset machining of vertical straight-line nanochannel at each cutting pass, when the volume of vertical straight-line nanochannel is being removed at the first 3 cutting passes and the following 6 cutting passes of the vertical straight-line nanochannel, the removed volume intersects with the removed volume of the 1/2 arc being cut to the expected depth. Thus, as long as an offset amount Pn is formed in a cutting pass, we need to change the downward force once, and make the machining depth to the expected depth 30nm in order to let the value of the protruding height value at the bottom become smaller than the set value 0.5nm. Therefore, after simulation, it can be seen that it needs machining for one cutting layer only, and the vertical straight-line nanochannel can be directly machined to the expected depth 30nm; and meanwhile, the required downward force is also less than the maximum value 91.33μN set by us, and the vertical straight-line nanochannel can just be directly machined to the expected depth 30nm. The paper also mentions the method of using a smaller downward force to remove the tiny protruding height value at the lateral edge of the vertical straight-line nanochannel.
The method is that vertical straight-line machining is performed along the line segments connecting the starting points and ending points of each machined length of the vertical straight-line nanochannel, and the tiny downward force would slightly increase the depth of the lateral edge of the vertical line of the vertical straight-line nanochannel. But the size of this tiny downward force has to be controlled to make the increased depth smaller than 0.54nm. In this way, removing the tiny protruding height value at the lateral edge would result in a vertical straight-line lateral edge. The paper also proposes the cross-section measurement method and the required straight line equation during AFM measurement experiment of integration of two 1/2-arc nanochannels with a vertical straight-line nanochannel.
Finally, the paper measures the results obtained from AFM experimental machining to verify that the paper’s simulation model, equation and AFM experimental machining method of integrating two ½-arc nanochannels with a vertical straight-line nanochannel for machining to the expected width and expected depth are rational and acceptable. To sum up, the paper possesses academic innovativeness and value in application.

目錄 摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1前言 1.2研究動機與目的 1.3文獻回顧 1.3.1原子力顯微鏡奈米加工之文獻 1.3.2切削深度及多道次加工之文獻 1.4本文架構 第二章 原子力顯微鏡簡介與實驗方法 2.1原子力顯微鏡操作原理 2.2原子力顯微鏡的操作模式 2.2.1接觸模式(Contact mode CM) 2.2.2非接觸模式(Non-contact mode NCM) 2.2.3敲擊模式(Tapping mode TM) 2.3實驗設備介紹 2.3.1多模態原子力顯微鏡D3100 2.3.2原子力顯微鏡之常用探針 2.4奈米切削實驗設定(Experimental set-up) 2.4.1實驗試片及探針 2.4.2單晶矽晶圓材料 2.5AFM探針下壓力量測方法 第三章 建立加工直線段奈米流道梯形凹槽到預定寬度及預定深度之理論模式及切削規劃 3.1比下壓能理論模型及計算比下壓能方法 3.2直線段奈米流道梯形凹槽之兩道次偏移加工法 3.3建立加工直線段奈米流道梯形凹槽到預定深度及預定寬度之方法 3.4直線段不同切削道次路徑規劃及探討 第四章 建立整合直線奈米流道連接1/4圓弧奈米流道到預定寬度與預定深度之奈米流道之切削加工模擬方法 4.1建立近似1/4圓弧加工之圓弧方程式 4.2建立1/4圓弧在偏移後的各切削道次的圓弧方程式 4.3建立近似理想1/4圓弧的微小直線段 第五章 整合直線奈米流道連接1/4圓弧奈米流道的AFM實驗及量測驗證方法 5.1驗證直線奈米流道連接1/4圓弧奈米流道之方法 第六章 整合兩個水平奈米流道及一個垂直直線奈米流道加工到預定寬度與預定深度之奈米流道之切削模擬模式及去除微小凸起側邊的方法 6.1整合兩個水平奈米流道及一個垂直直線奈米流道加工到預定寬度與預定深度之奈米流道之切削模擬模式 6.2去除垂直直線奈米流道之垂直直線奈米流道微小凸起側邊方法 6.3整合兩水平直線奈米流道和一個垂直直線奈米流道到預定寬度及預定深度的模擬模式的垂直直線奈米流道的垂直直線段及去除微小凸起側邊的模擬結果與AFM加工實驗之量測驗證。 6.3.1整合兩個水平直線奈米流道和垂直直線奈米流道之垂直直線段流道有微小凸起側邊量測方法驗證 6.3.2去除垂直直線流道的微小凸起側邊的實驗量測驗證 6.3.3去除垂直奈米流道微小凸起側邊的實驗驗證 第七章 整合兩個1/2圓弧奈米流道連結一個垂直直線奈米流道到預定寬度及預定深度的加工模擬方法 7.1整合兩個1/2圓弧奈米流道連結一個垂直直線奈米流道到預定寬度及預定深度的加工方法 7.2整合兩個1/2圓弧奈米流道連接垂直直線奈米流道之理論模式模擬方法 7.3建立1/2圓弧第一切削道次及第二切削道次理想圓弧微小直線段座標點計算方法 7.3.1建立下方1/2圓弧加工之第一切削道次微小直線段近似圓弧方程式 7.3.2建立下方1/2圓弧加工之第二切削道次微小直線段近似圓弧方程式 7.3.3 建立上方1/2圓弧加工之第一切削道次以及第二切削道次微小直線段近似圓弧方程式 7.4整合兩個1/2圓弧奈米流道連接垂直奈米流道之去除垂直直線奈米流道之微小凸起側邊方法 第八章 整合兩個1/2圓弧奈米流道以及垂直直線奈米流道的AFM實驗量測驗證方法 8.1 整合兩個1/2圓弧奈米流道連接垂直直線奈米流道之實驗量測步驟說明 8.2 量測驗證整合兩個1/2圓弧奈米流道以及垂直直線奈米流道之圓弧奈米流道的方法 8.3整合兩個1/2圓弧奈米流道以及垂直奈米流道加工之驗證垂直直線奈米流道及驗證及驗證去除微小凸起側邊之方法 8.3.1驗證垂直直線奈米流道之方法 8.3.2驗證垂直直線奈米流道之微小凸起側邊之方法 第九章 整合直線段加工連結1/4圓弧段加工模擬結果與實驗驗證結果 9.1探討直線段到1/4圓弧段預定寬度及預定深度之模擬 9.2 計算直線段到不同預定寬度及預定深度的偏移量、切削道次數及上凸值 9.3 直線段的切削層及之探討及模擬 9.4 建立整合直線段加工及1/4圓弧段加工到預定深度與預定寬度之奈米流道之模擬 9.4.1 第一切削道次及第二切削道次理想圓弧座標點計算 9.4.2建立微小直線的近似1/4圓弧曲線之線段 9.4.3 AFM加工實驗之量測斷面及偏移量 9.5加工到預定深度30nm與預定寬度202nm二切削道次之模擬結果與AFM加工實驗結果之量測驗證 第十章 整合兩個1/2圓弧奈米流道連結一個垂直直線奈米流道到預定寬度及預定深度的模擬模式的模擬結果與AFM實驗及量測驗證結果 10.1建立整合兩個1/2圓弧奈米流道和一個垂直直線奈米流道到預定深度與預定寬度之奈米流道之模擬結果 10.1.1 第一切削道次及第二切削道次理想1/2圓弧座標點計算結果 10.1.2建立四捨五入微小直線段近似1/2圓弧之結果 10.1.3建立整合兩個1/2圓弧奈米流道和一個垂直直線奈米流道到預定深度23.014nm之模擬結果 10.1.4建立整合兩個1/2圓弧奈米流道和一個垂直直線奈米流道到預定深度30nm之模擬結果 10.2 整合兩個1/2圓弧奈米流道以及一個垂直奈米流道加工步驟與量測驗證的量測斷面 10.2.1整合兩個1/2圓弧奈米流道以及垂直奈米流道加工步驟及量測步驟 10.2.2整合兩個1/2圓弧奈米流道以及垂直奈米流道量測驗證的量測斷面 10.3整合兩個1/2圓弧奈米流道以及垂直奈米流道加工之圓弧之模擬結果與實驗驗證 10.3.1整合兩個1/2圓弧奈米流道以及垂直奈米流道加工到預定深度23nm兩個1/2圓弧奈米流道之模擬結果與量測驗證 10.3.2整合兩個1/2圓弧奈米流道以及垂直奈米流道加工到預定深度23nm垂直直線奈米流道之模擬結果與量測驗證 10.3.3整合兩個1/2圓弧奈米流道以及垂直奈米流道加工到預定深度30nm圓弧段之模擬結果與量測驗證 10.3.4整合兩個1/2圓弧奈米流道以及垂直奈米流道加工到預定深度30nm垂直直線奈米流道之模擬結果與量測驗證 10.3.5整合兩個1/2圓弧奈米流道以及垂直奈米流道加工到預定寬度及預定深度去除微小凸起側邊之模擬結果與量測驗證 第十一章 結論 參考文獻

[1] Binning, G., Quate, C. F. and Gerber, C., ”Atomic Force Microscope”, Physical Review Letters, Vol. 56, No. 6, pp.930-933 (1986).

[2] Nanjo, H., Nony, L., Yoneya, M. and Aime, J. P.,”Simulation of Section Curve by Phase Constant Dynamic Mode Atomic Force Microscopy in Non-contact Situation”, Applied Surface Science, Vol. 210, No. 1, pp. 49-53 (2003).

[3] Lübben, J. F. and Johannsmann, D., “Nanoscale High-frequency Contact Mechanics Using an AFM Tip and a Quartz Crystal Resonator”, Langmuir, Vol. 20, No. 9, pp. 3698-3703 (2004).

[4] Tseng, A. A., Jou, S., Notargiacomo, A. and Chen, T. P., ”Recent Developments in Tip-based Nanofabrication and Its Roadmap”, Journal of Nanoscience & Nanotechnology, Vol. 8, No. 5, pp. 2167–2186 (2008).

[5] Fang, T. H., Weng, C. I. and Chang, J. G., ”Machining Characterization of Nano-lithography Process by Using Atomic Force Microscopy”, Nanotechnology, Vol. 11, No. 5, pp. 181-187 (2000).

[6] Schumacher, H. W., Keyser, U. F. and Zeitler, U., “Controlled mechanical AFM machining of two-dimensional electron systems: Fabrication of a single-electron transistor”, Physica E., Vol. 6, pp. 860-863 (2000).

[7] Yongda, Y., Tao, S., Liang, Y. C. and Shen, D., “Investigation on AFM based micro/nano CNC machining system”, International Journal of Machine Tools and Manufacture, Vol. 47, No. 11, pp.1651-1659 (2007).

[8] Wang, Z. Q., Jiao, N. D., Tung, S. and Dong, Z. L., “Research on the atomic force microscopy-based fabrication of nanochannels on silicon oxide surfaces”, Chinese Science Bulletin, Vol. 55, No. 30, pp. 3466-3471 (2010).

[9] Tseng, A. A., “A comparison study of scratch and wear properties using atomic force microscopy”, J. Applied Surface Science, Vol. 256, Issue 13, pp. 4246- 4252 (2010).

[10] Ermer, D. S., “Optimization of the constrained machining economics problem by geometric programming”, Transactions of ASME Journal of Engineering for Industry, Vol. 93, pp. 1067-1072 (1971).

[11] Chen, M. C. and Tsai, D. M., “A simulated annealing approach for optimization of multipass turning operations”, International Journal of Production Research, Vol. 34, pp. 2803-2825 (1996).

[12] Shunmugam, M. S., Bhaskara, S. V. and Narendran, T. T., “Selecion of optimal conditions in multi-pass face-milling using a genetic algorithm”, International Journal of Machine Tools and Manufacture, Vol.40, pp. 401-414 (2000).

[13] Satishkumar, S., Asokan, P. and Kumanan, S., “Optimization of depth of cut in multi-pass turning using nontraditional optimization technology”, International Journal of Advanced Manufacturing Technology, Vol.29, pp. 230-238 (2006).

[14] Özen, S., and Bayhan, G. M., “Optimization of depth of cut in multi-pass machining using Hopfield type neural networks”, Proceedings of the 2011 International Conference on Industrial Engineering and Operations Management Kuala Lumpur, Malaysia, January, pp. 22-24 (2011).

[15] Li, J. G., Yong, L., Hang, Z., Peng, L. and Yao, Y. X., “Optimization of cutting parameters for energy saving”, Int J Adv Manuf Technol, Vol. 70, pp. 117-124 (2014).

[16] Geng, Y. Q., Yan, Y. D., Xing, Y. M., Zhao, X. S. and Hu, Z. J., “Modelling and experimental study of machined depth in AFM-based milling of nanochannels”, International Journal of Machine Tools & Manufacture, Vol. 73, pp. 87-96 (2013).

[17] Bourne, K. A., Kapoor, S. G. and DeVor, R. E., “Study of a High Performance AFM Probe-Based Microscribing Process”, J. Manuf. Sci., Vol. 132, No. 3 (2010).

[18] Lin, Z. C. and Hsu, Y. C., “A calculating method for the fewest cutting passes on sapphire substrate at a certain depth using specific down force energy with an AFM probe”, Journal of Materials Processing Technology, Vol. 212, pp. 2321-2331 (2012).

[19] 馬士閎, “單晶矽奈米流道梯型凹槽最少切削道次估算及驗證”國立台灣科技大學機械工程研究所,碩士論文,民國105年。

[20] Cardoso, V.F., Mirandaa, D., Botelhoc, Minasb, G., Lanceros-Méndeza, S.,“Highly effective clean-up of magnetic nanoparticles using microfluidic”

[21] 方信人, “單晶矽奈米流道曲線加工到預定寬度及深度之模擬模式建立及實驗驗證”國立台灣科技大學機械工程研究所,碩士論文,民國107年。

[22] Yeh, S. S. and Hsu, P. L., “Adaptive-feedrate Interpolation for Paramertic Curves with a Confined Error” Computer-Aided Design, Vol. 34, pp. 229-237 (2002).
[23] 王昱菘,“整合喇叭型奈米流道及水平和垂直奈米流道到預定寬度及預定深度模擬模式建立及實驗驗證” 國立台灣科技大學機械工程研究所,碩士論文,民國108年。

[24] Aikawa, T., Konno, T., Takai, M. and Ishihara, K., “Spherical Phospholipid Polymer Hydrogels for Cell Encapsulation Prepared with a Flow-Focusing Microfluidic Channel Device”, ACS Journal of American Chemical Society, Vol. 28, No. 3, pp. 2145-2150 (2012)

[25] Dangi, S. and Riehn, R. “Nanoplumbing with 2D Metamaterials” https://doi.org/10.1002/smll.201803478(2018)

[26] Digital Instruments Dimension™ 3100 Manual. Version 4.43B, Digital Instruments Veeco Metrilogy Group (2000).

[27] 蔡竺孝, “以原子力顯微鏡探針利用比下壓能之觀念建立藍寶石基板凹槽圖形加工方法及實驗研究” 國立台灣科技大學機械工程研究所,碩士論文,民國100年

無法下載圖示 全文公開日期 2025/08/10 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE