簡易檢索 / 詳目顯示

研究生: Daniel Zurhausen
Daniel Zurhausen
論文名稱: 評估大型複循環發電廠提供區域供冷系統之熱效率研究
Development of the First District Cooling System Combined with a Large Combined Cycle Power Plant to Increase its Thermal Efficiency
指導教授: 林怡均
Yi-Jiun Peter LIN
口試委員: 黃振康
Ming-Jyh Chern
陳明志
Chen-Kang Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 185
中文關鍵詞: district coolingcombined cooling and powerthermal efficiencyabsorption chillercold end corrosioncombined cycle power plantSiemenscooling demandchiller technologypump sizingexpansion tank sizing
外文關鍵詞: district cooling, combined cooling and power, thermal efficiency, absorption chiller, cold end corrosion, combined cycle power plant, Siemens, cooling demand, chiller technology, pump sizing, expansion tank sizing
相關次數: 點閱:282下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 幾乎全球所有地區的空調使用量都有顯著增長。受到收入增加和對於生活品質要求提高的影響。在發展中國家 - 但不限於它們 - 一些地區需要面臨冷卻電力消耗量顯著增長的問題。高效率能源的解決方案能夠降低對於自然環境的衝擊,而公用電力事業經營者認為區域供冷系統與目前市面的空調商品相比,可以減少40%的用電量。本論文的目標在於開發一種與高效率聯合循環發電廠相結合的熱驅動區域冷卻系統,以及評估該系統與同等規模的電力驅動冷卻裝置之個別經濟效益。本研究分別開發與比較使用蒸汽,熱水和燃氣驅動的吸收式冰水機組以及汽輪機和燃氣發動機冰水機組的方式。蒸汽吸收式冰水機組是最有競爭力的。然而,使用實際發電廠 (座落於韓國首爾)的資料藉由簡易熱力學的計算分析結果顯示,蒸汽吸收式冰水機組的年度性能表現比市面的電動冰水機組較差。進一步的熱力學數值模擬分析結果顯示,他們之間的年度性能差距甚至達到了 26%。因此,與複循環發電廠結合的熱驅動冷卻系統在經濟上並沒有顯著的優勢。
    然而,在進行此一論文研究工作當中,開發了一種新的方法,它能夠提供有限量的冰水作為副產品。本論文亦討論此一新的方法,研究分析結果顯示此一新的方法能夠增加電廠的輸出功率約為 0.5 MW 以及提升約 0.08% 效率 (以印尼 624 MW 的電廠進行模擬)。


    Almost all regions around the globe face a significant increase in usage of air-conditioning. Driven by rising incomes and related demand for higher quality of living in developing countries | but not limited to them | some regions need to handle a significant growth of electricity consumption for cooling purposes up to six times higher than it is to date. Energy efficient solutions are required to keep the environmental impact as small as possible. Utility operators identified district cooling as such, which - amongst other benefits - can reduce electricity consumption by 40% compared to commodities for air-conditioning. This thesis aims at the development of a heat driven district cooling system combined with a high efficiency combined cycle power plant, which can compete with electric cooling plants of equal size. Concepts with steam, hot water and gas driven absorption chiller as well as steam turbine and gas engine chillers were developed. Steam absorption chillers were identifi ed as the most promising one. However, a manual thermodynamic analysis shows that their annual performance is expected to be 16% worse than that of electric chillers. A further numerical thermodynamic analysis reveals that the performance gap between them is even up to 26 %. Hence, the objective is missed and combined cooling and power with heat driven chillers is not feasible economically.
    However, while working on this thesis, a novel process was identified, which provides a limited amount of chilled water as a by-product. The thesis shifts the focus on the basic engineering of this novel process. It is found that this novel process increases the power plant's power output by up to almost 0.5MW and its efficiency by 0.08% (simulated for a 624MW plant in Indonesia).

    1 Introduction 1 2 Combined Cycle Power Plant Basics 3 2.1 Functionality of Combined Cycle Power Plants . . . . . . . . . . . . . . 3 2.2 Heat Recovery with Coupled Water Steam Cycle for High Efficiencies . 4 2.2.1 Basic Description of the Water Steam Cycle . . . . . . . . . . . 6 2.2.2 The Pressure-Enthalpy Diagram for Water Steam Cycles . . . . 8 2.2.3 Cogeneration in Power Plants . . . . . . . . . . . . . . . . . . . 8 3 Overview About Current Chiller Technologies 13 3.1 Coefficient of Performance . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Vapour Compression Chillers . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 Components of a Vapour Compression Cycle . . . . . . . . . . . 14 3.2.2 Pressure-Enthalpy Diagram of a Vapour Compression Cycle . . 15 3.2.3 Heat and Mass Balance in a Centrifugal Chiller . . . . . . . . . 16 3.2.4 Drives for Vapour Compression Chillers . . . . . . . . . . . . . . 18 3.3 Absorption Chillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.1 Components of the Absorption Refrigeration Cycle . . . . . . . 21 3.3.2 Vapour Pressure Chart for Aqueous Lithium-Bromide Solutions 24 3.3.3 Multi-Effect Absorption Chillers . . . . . . . . . . . . . . . . . . 26 3.3.4 Heat Sources for Absorption Chillers . . . . . . . . . . . . . . . 28 3.3.5 Heat and Mass Balance in a Single-Effect Absorption Chiller . . 28 3.3.6 Heat and Mass Balance in a Double-Effect Absorption Chiller . 33 3.4 Adsorption Chillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5 Steam Jet Chillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.6 Free Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4 Market Analysis for District Cooling 41 4.1 Outlook Cooling Demand . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 The Benefits of District Cooling . . . . . . . . . . . . . . . . . . . . . . 44 4.3 Market Analysis of District Cooling Capacities and Concepts . . . . . . 46 5 Derivation of System Design Data 51 5.1 Reference Power Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2 Objectives for Combined Cooling and Power Plants . . . . . . . . . . . 52 5.3 Derivation of Annual Cooling Load . . . . . . . . . . . . . . . . . . . . 53 5.3.1 Total Annual Cooling Demand . . . . . . . . . . . . . . . . . . . 53 5.3.2 Seoul’s Normalised Cooling Demand Correlation . . . . . . . . . 54 5.3.3 Annual Cooling Load Profile . . . . . . . . . . . . . . . . . . . . 57 5.3.4 Equipment Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.5 Defining Off-Design Load Points . . . . . . . . . . . . . . . . . . 67 5.3.6 Annual District Heating Load Profile . . . . . . . . . . . . . . . 69 5.4 Remaining Design Data . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6 District Cooling Concepts Analysis 77 6.1 General System Description . . . . . . . . . . . . . . . . . . . . . . . . 77 6.2 Available District Cooling Concepts . . . . . . . . . . . . . . . . . . . . 79 6.3 Concept Performance Estimations . . . . . . . . . . . . . . . . . . . . . 81 6.3.1 Performance Analysis of District Cooling Concept 1 . . . . . . . 85 6.3.2 Performance Analysis of District Cooling Concept 2 . . . . . . . 88 6.3.3 Comparison of Performance Estimations . . . . . . . . . . . . . 93 6.4 Combined Cooling and Power Plant Simulation . . . . . . . . . . . . . 94 6.4.1 Plant Simulation Results . . . . . . . . . . . . . . . . . . . . . . 94 6.4.2 Plant Simulation Conclusion . . . . . . . . . . . . . . . . . . . . 97 6.4.3 Future Performance Prediction . . . . . . . . . . . . . . . . . . 101 6.5 Alternative District Cooling Concept . . . . . . . . . . . . . . . . . . . 101 6.5.1 Cold End Corrosion Protection . . . . . . . . . . . . . . . . . . 102 6.5.2 Novel Process for Free Chilled Water Extraction from Cold End Corrosion Protection . . . . . . . . . . . . . . . . . . . . . . . . 103 6.5.3 Cold as a By-Product from Cold End Corrosion Protection . . . 104 6.5.4 Design Data of District Cooling Concept 10 . . . . . . . . . . . 107 7 District Cooling Plant — Basic Engineering 111 7.1 Piping and Instrumentation Diagrams for District Cooling Concept 10 . 111 7.1.1 System Description High-Temperature Heat Source . . . . . . . 112 7.1.2 System Description Heat Rejection . . . . . . . . . . . . . . . . 114 7.1.3 System Description Chilled Water Supply Line . . . . . . . . . . 115 7.1.4 System Description Chilled Water Return Line . . . . . . . . . . 117 7.1.5 System Description Chilled Water Distribution . . . . . . . . . . 121 7.2 Main Component Sizing of the District Cooling Plant . . . . . . . . . . 123 7.2.1 Sizing of Main Piping . . . . . . . . . . . . . . . . . . . . . . . . 123 7.2.2 Piping Pressure Losses in District Cooling Main Pipe . . . . . . 125 7.2.3 Chilled Water Circulating Pump Sizing . . . . . . . . . . . . . . 130 7.2.4 Expansion Tank Sizing . . . . . . . . . . . . . . . . . . . . . . . 132 7.2.5 Impact on Condensate Extraction Pump . . . . . . . . . . . . . 138 8 Conclusion 141 A Piping and Instrumentation Diagrams Legend 145 B Moody Diagram 147

    [1] Michael A. McNeil and Virgine E. Letschert. Future Air Conditioning Energy
    Consumption in Developing Countries and what can be done about it: The Potential
    of Efficiency in the Residential Sector. Technical report, Lawrence Berkeley
    National Laboratory, 2008.
    [2] Siemens AG. 3D Render graphic SGT5-8000H. www.siemens.com/ global/
    en/ home/ products/ energy/ power-generation/ gas-turbines/ sgt5-8000h.html, accessed
    on 2017/07/25.
    [3] Siemens AG. We power the world with innovative gas turbines. Siemens gas
    turbine portfolio. Technical Report PGDG-B10006-04-4A00, Siemens AG, 2013.
    [4] Siemens AG. Hi50-m4 l2x12.5 dse 010 b persp h0720.png. Internal 3D rendering,
    2017.
    [5] Dr. Ralf Bell. Dampfturbinen - Einsatzspektrum. Technical report, Siemens AG,
    2010.
    [6] Siemens AG. Plant Design Report. Unpublished internal document. Doc.-No.:
    439311579, 2014.
    [7] Siemens AG. SST-PAC 5000 - Steam Turbine Package. Technical report, Siemens
    AG, 2016.
    [8] Christian Helesch. Flexible steam turbine solutions for combined heat and power
    in combined cycle power plants. Technical report, Siemens AG, 2013.
    [9] The Trane Company. Centrifugal Chillers. One of the Equipment Series. Technical
    Report TRG-TRC010-EN, The Trane Company, 1999.
    [10] Daikin. Application Guide. Centrifugal Chiller Fundamentals. Technical Report
    AG 31-002, Daikin, 2015.
    [11] York by Johnson Controls. Model YST Steam-Turbine Drive Centrifugal Liquid
    Chillers Design Level F. Technical Report 160.67-EG1 (408), Johnson Controls,
    2008
    [12] York. MILLENIUM. Gas-Engine-Drive Chillers. Model YBMCMCG4 – G3406A.
    Technical Report 160.66-EG1, York International Corporation, 1997.
    [13] Ian Spanswick. Advances in Steam Cooling. ASHRAE Journal, September 2003.
    [14] Fritz Kleiner and Steve Kauffman. All Electric Driven Refrigeration Compressors
    in LNG Plants Offer Advantages. Technical report, Siemens AG, 2005.
    [15] Energy Solutions Center Inc. A Cool Solution to the High Cost of Cooling. Technical
    report, Energy Solutions Center Inc., 2005.
    [16] Caterpillar. Engines? Turbines? Both? Choosing Power for CHP Projects.
    Technical Report LEXE0616-00, Caterpillar, 2013.
    [17] The Trane Company. Absorption Water Chillers. One of the Equipment Series.
    Technical Report TRG-TRC011-EN, The Trane Company, 2012.
    [18] Keith E. Herold, Reinhard Radermacher, and Sanford A. Klein. Absorption
    Chillers and Heat Pumps. Second Edition. CRC Press. Taylor & Francis Group,
    6000 Broken Sound Parkway NW, Suite 300. Boca Raton, FL 33487-2742, USA,
    2016.
    [19] Refrigerating American Society of Heating and Air-Conditioning Engineers. 2009
    ASHRAE Handbook: Fundamentals. American Society of Heating, Refrigerating
    and Air-Conditioning Engineers, 1791 Tullie Circle NE, Atlanta, GA 30329, USA,
    2009.
    [20] New Buildings Institute. Guideline. Absorption Chillers. New Buildings Institute,
    11626 Fair Oaks Blvd., Fair Oaks, CA 95628, USA, 1998.
    [21] Sachin Kaushik and Dr. S. Singh. Thermodynamic Analysis of Vapour Absorption
    Refrigeration System and Calculation of COP. International Journal for Research
    in Applied Science and Engineering Technology, February 2014.
    [22] Farshad Panahi Zadeh and Navid Bozorgan. The Energy and Exergy Analysis of
    Single Effect Absorption Chiller. International Journal for Advanced Design and
    Manufacturing Technology, September 2011.
    [23] Annett K¨uhn. Thermally Driven Heat Pumps for Heating and Cooling. Universit¨atsverlag
    der TU Berlin, Fasanenstr. 88, 10623 Berlin, Germany, 2013.
    [24] GBU mbH. Adsorption Chiller NAK. Technical report, GBU mbH, 1999.
    [25] K¨orting Hannover AG. Steam jet chilling plants. Technical report, K¨orting Hannover
    AG, 2014.
    [26] K¨orting Hannover AG. Design Features and Operation of Jet Ejectors. Technical
    report, K¨orting Hannover AG, 2014.
    [27] S.A. Sherif, D.Y. Goswami, G.D. Mathur, S.V. Iyer, B.S. Davanagere, S. Natarajan,
    and F. Colacino. A Feasibility Study of Steam-Jet Refrigeration. International
    Journal of Energy Research, pages 1323–1336, 1998.
    [28] SPX Cooling Technologies Inc. Free Cooling. Minimizing Energy Costs. Technical
    Report H-002A, SPX Cooling Technologies Inc., 2016.
    [29] Yoon Jung-In, Son Chang-Hyo, Choi Kwang-Hwan, Baek Seung-Moon, Heo JeongHo,
    and Kim Young-Min. Analysis of Energy Reduction of Free Cooling Systems
    with Regions of South Korea. Journal of the Korean Solar Energy Society, 34,
    No.3, 2014.
    [30] Anders Tv¨arne, Henrik Frohm, and Anders Rubenhag. EU District Cooling Market
    and Trends. Technical report, Capital Cooling Energy Service AB, 2014.
    [31] Clean Energy Ministrial. Energy Efficient Cooling and Demand Response. Technical
    report, Clean Energy Ministrial, 2014.
    [32] Duk Joon Park, Ki Hyung Yu, Yong Sang Yoon, Kee Han Kim, and Sun Sook
    Kim. Analysis of a Building Energy Efficiency Certification System in Korea.
    sustainability 2015, 7:16086–16107, 2015.
    [33] Seung Jin Oh, Kim Choon Ng, Kyaw Thu, Wongee Chun, and Kian Jon Ernest
    Chua. Forecasting long-term electricity demand for cooling of Singapore’s buildings
    incorporating an innovative air-conditioning technology. International Journal
    for Research in Applied Science and Engineering Technology, 127:183–193,
    September 2016.
    [34] Pei-Ling Wen, Ching-Wei Kuo, Tzu-Yar Liu, and Ming-Lung Hung. Deployment
    of renewables energies in Taiwan within the TIMES framework. Technical report,
    institution unknown, no date.
    [35] Dr. Walid Fayad, George Sarraf, and Tarek El Sayed Simon-Pierre Monette. Unlocking
    the potential of district cooling. The need for GCC governments to take
    action. Technical report, strategy&, 2012.
    [36] Decentralized Energy. District cooling heats up. www.decentralized-energy.
    com/ articles/ print/ volume-16/ issue-5/ features/ district-cooling-heats-up.html,
    accessed on 2017/02/17.
    [37] ITP Media Group. Saudi Arabia district cooling sees bright future.
    www.utilities-me.com/ article-4365-saudi-arabia-district-cooling-sees-brightfuture/
    , accessed on 2017/02/17.
    [38] Naomi O’Connor and Lyn Fletcher. APEC Energy Demand and Suppy Outlook
    5th Edition. Asia Pacific Energy Research Centre, 1-13-1 Kachidoki, Chuo-ku,
    Tokyo 104-0054, Japan, 2013.
    [39] Asian Development Bank. District Cooling in the People’s Republic of China. Asia
    Pacific Energy Research Centre, 6 ADB Avenue, Mandaluyong City, 1550 Metro
    Manila, Philippines, 2017.
    [40] Centre for Science and Environment. Energy and Buildings. Technical report,
    Centre for Science and Environment, 2014.
    [41] Robert Priddle. India Energy Outlook. Technical report, International Energy
    Agency (IEA), 2015.
    [42] Nihan Karali, Michael A. McNeil, Virginie Letschert, and Stephane de la Rue de
    Can. Potential Impact of Lighting and Appliance Efficiency Standards on Peak
    Demand: The Case of Indonesia. Technical report, Lawrence Berkeley National
    Laboratory, 2015.
    [43] Ren´e Kemna. Average EU building heat load for HVAC equipment. Technical
    report, Van Holsteijn en Kemna B.V., 2014.
    [44] Deloitte. Energy on demand: the future of GCC energy efficiency. Middle East Energy
    and Resources. Managing scarcity for the future. Technical report, Deloitte,
    2015.
    [45] International Energy Agency (IEA) and World Bank. Sustainable Energy for
    All 2015—Progress Toward Sustainable Energy. World Bank, 1818 H St NW,
    Washington, DC 20433, USA, 2015.
    [46] Mitsubishi Heavy Industries Ltd. Energy-Efficient Air Conditioning to
    Keep Shinjuku Comfortable. social-innovation.hitachi/ en/ case studies/ energyefficient-air-conditioning-to-keep-shinjuku-comfortable/
    index.html, accessed on
    2017/02/21.
    [47] COWI. District Cooling - References. Technical report, COWI, 2014.
    [48] James S. Lee. Transit Synergized Development. Technical report, iContinuum
    Group, 2012.
    [49] MA Chun-yue. Implementation of District Cooling System at Kai Tak Development.
    Technical report, Energy Efficiency Office. Electrical and Mechanical
    Services Department, 2014.
    [50] Hitachi Ltd. MHI Receives Order for 80 Large-scale Centrifugal Chillers, with
    Combined 200,000 Refrigeration Tons Cooling Capacity from Saudi Arabia. www.
    mhi.co.jp/ en/ m/ news/ story/ 1507231904.html, accessed on 2017/02/21.
    [51] Henrik Frohm, Anders Tv¨arne, and Kosti Koski. Best practice examples of District
    Cooling Systems. Technical report, Capital Cooling Energy Service AB, 2014.
    [52] Marko Riipinen. District Cooling in Finland. Technical report, Helsingin Energia,
    2014.
    [53] Terttu Vainio, Tomi Lindroos, Esa Pursiheimo, Teemu Vesanen, Kari Sipil¨a, Miimu
    Airaksinen, and Antti Rehunen. High-efficiency CHP, district heating and
    district cooling in Finland 2010-2025. Technical report, VTT Technical Research
    Centre of Finland and Finnish Environment Institute, 2015.
    [54] Moritz Gathmann. Heat and Power: An Efficient Combination. Living Energy,
    12:51–55, Juli 2015.
    [55] Thomas Edgar and Jong Kim. Economic Dispatch of a Combined Heat and Power
    Plant. Technical report, University of Texas at Austin, 2013.
    [56] Statistics Korea. Table: Population, Households and Housing Units. Annual 2015
    - 2015. www.kosis.kr/ statHtml/ statHtml.do? orgId=101& tblId=DT 1IN1502&
    language=en&conn path=I3 , accessed on 2017/03/24.
    [57] Joo-Heon Park. 2016 Energy Info. Korea. Technical Report ISSN 2233-4386,
    Korea Energy Economics Institute, 2016.
    [58] M. Santamouris. Energy performance of residential buildings: a practical guide for
    energy rating and efficiency. Earthscan, 2 Park Square, Milton Park, Abingdon,
    Oxon OX14 4RN, UK, 2005.
    [59] Kyoung-Mi Lee, Hee-Jeong Baek, and Chun-Ho Cho. The Estimation of Base
    Temperature for Heating and Cooling Degree-Days for South Korea. Journal of
    Applied Meteorology and Climatology, 53:300–309, 2014.
    [60] Korea District Heating Corp. KDHC District Cooling Sales Volumes. kdhc.co.kr/noticeList.do?cmsCd=CM3711 , accessed on 2017/03/15.
    61] BizEE Software and Weather Underground. Celsius-based cooling degree days
    for a base temperature of 17.0C. Station: Seoul / KimpO International Airport
    (126.79E,37.56N) RKSS. www.degreedays.net, accessed on 2017/03/29.
    [62] Refrigerating American Society of Heating and Air-Conditioning Engineers. 2013
    ASHRAE Handbook: Fundamentals. American Society of Heating, Refrigerating
    and Air-Conditioning Engineers, 1791 Tullie Circle NE, Atlanta, GA 30329, USA,
    2013.
    [63] Roland Stull. Wet-Bulb Temperature from Relative Humidity and Air Temperature.
    Journal of Applied Meteorology and Climate, 50:2267–2269, 2011.
    [64] Siemens AG. Siemens Refrigeration Compressor Package. Technical Report
    E50001-G420-A120-X-4A00, Siemens AG, 2010.
    [65] Air-Conditioning, Heating, and Refrigeration Institute. Performance Rating of
    Water-chilling and Heat Pump Water-heating Packages Using the Vapor Compression
    Cycle. Technical Report AHRI Standard 551/591 (SI), AHRI, 2015.
    [66] Air-Conditioning, Heating, and Refrigeration Institute. Absorption Water Chilling
    and Water Heating Packages. Technical Report AHRI Standard 560-2000, AHRI,
    2000.
    [67] BizEE Software and Weather Underground. Celsius-based heating degree days
    for a base temperature of 17.0C. Station: Seoul / KimpO International Airport
    (126.79E,37.56N) RKSS. www.degreedays.net, accessed on 2017/03/29.
    [68] Refrigerating American Society of Heating and Air-Conditioning Engineers. 2000
    ASHRAE Handbook: HVAC Systems and Equipment. American Society of Heating,
    Refrigerating and Air-Conditioning Engineers, 1791 Tullie Circle NE, Atlanta,
    GA 30329, USA, 2000.
    [69] Siemens AG. District Cooling Plants. Technical report, Siemens AG, 2014.
    [70] Mick Schwedler. Effect of Heat Rejection Load and Wet Bulb on Cooling Tower
    Performance. ASHRAE Journal, pages 16–22, January 2014.
    [71] J.M. Campbell. Gas Conditioning and Processing, Volume 2: The Equipment
    Modules. Technical Report 9th edition, Campbell Petroleum Series, 2014.
    [72] V. Ganapathy. Cold End Corrosion: Causes and Cures. Hyrdocarbon Processing,
    pages 57–59, January 1989.
    [73] Steven T. Taylor. Optimizing Design & Control of Chilled Water Plants. ASHRAE
    Journal, pages 14–25, July 2011.
    [74] O. Weber, M. Rivas P´erez. Design Guideline: Flow Velocities for piping systems.
    Technical Report internal document, Siemens AG, 2014.
    [75] Mohinder L. Nayyar. Piping Handbook. McGraw-Hill, 2 Penn Plaza, New York,
    NY, USA, 1999 7th Edition.
    [76] C.F. Colebrook. Turbulent Flow in Pipes with Particular Reference to the Transition
    Region Between the Smooth and Rough Pipe Laws. Journal of the Institution
    of Civil Engineers, 11:133–156, 1939.
    [77] Crane. Flow of Fluids Through Valves, Fittings, and Pipe. Technical Report
    410M, Crane Co., 1982.
    [78] I.E. Idel’chik. Handbook of Hydraulic Resistance. Coefficients of Local Resistance
    and of Friction. Technical Report AEC-tr-6630, Israel Program for Scientific
    Translations Ltd., 1982.
    [79] VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen. VDI Heat Atlas.
    Springer-Verlag Berlin Heidelberg, Tiergartenstr. 17, D-69121 Heidelberg, Germany,
    2010 2nd Edition.
    [80] Michael Reader-Harris. Orifice Plates and Venturi Tubes. Springer International
    Publishing, Gewerbestr. 11, CH-6330 Cham, Switzerland, 2015.
    [81] ARI Armaturen. ARI Strainers. Technical report, ARI-Armaturen Albert Richter
    GmbH & CO. KG, 2017.
    [82] KSB. Nori 40. Technical Report 71271./9-10, KSB AG, 2010.
    [83] Steven T. Taylor. Understanding Expansion Tanks. ASHRAE Journal, pages
    24–30, March 2003.

    無法下載圖示 全文公開日期 2023/01/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE