簡易檢索 / 詳目顯示

研究生: 劉尚豪
Shang-Hao Liu
論文名稱: 矩形斷面建築物向量風力載重效應之研究
Study on Vectorial Wind Load Effects for Rectangular Section Buildings
指導教授: 陳瑞華
Rwey-Hua Cherng
口試委員: 鄭蘩
Van Jeng
黃慶東
Ching-Tung Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 159
中文關鍵詞: 向量載重效應風力頻譜加速度相關係數
外文關鍵詞: vectorial wind load effects, wind load spectra, correlation coefficient
相關次數: 點閱:193下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 建築物於風力的作用下,產生順風向、橫風向與扭轉向風力載重效應,向量載重效應是前述三種效應之非線性組合,其中建築物頂層角隅處之總振動加速度是本文研究的重點。我國耐風設計規範中,總振動加速度的公式是基於順風向與橫風向及扭轉向效應不相關,而橫風向與扭轉向效應完全相關之假設估計而得;本研究嘗試推導新的設計公式,以考慮三個方向載重效應的部分相關性。首先利用流體數值模擬求得不同矩形建築三個方向之風力頻譜與交頻譜,再代入以隨機振動理論所推導公式,計算三個方向結構加速度之相關係數,最後代入本文所推導公式,估計總振動加速度最大值之平均值。其中,數值模擬是針對地況B的風場下,深寬比為1、0.5與2及高寬比為6、5與4的矩形建築;將結果與所蒐集之風洞資料比較,發現模擬之結果整體趨勢表現上跟風洞實驗是一致的,但是兩者頻譜值大小仍有差距。這導致在不同建築物特性參數及設計風速下,利用數值模擬與風洞實驗結果會得到不同的加速度相關係數。本研究推導出兩種設計公式,公式1為橢圓解析解法配合橢圓八邊形法推導而得,公式2為橢圓解析解法配合CQC法推得;將風洞資料所得之相關係數分別代入二公式後,可以估計出建築物角隅處總加速度最大值之平均值。本研究發現公式2會提供最準確的估計,現行規範公式稍微保守,而公式1最為保守。當風速越高或建築物高度越低,或橫風向與扭轉向頻率相差越大時,公式2之估計與現行規範公式之差距會越大。


    Buildings under wind loads result in along-wind, across-wind and torsional wind load effects; vectorial wind load effects are their nonlinear combinations. This study concerns the building top floor corner maximum acceleration and derives new formula considering the correlation between the wind load effects. First, wind load spectra are obtained by numerical simulations, and the results are compared with those from wind tunnel tests. The correlation coefficients between accelerations depend on the normalized wind load spectra, the fundamental natural frequencies and damping ratios. In this study, two formula have been derived; the difference is that formula 1 adopts an octagonal approximation while formula 2 adopts a CQC rule. Finally, the results of the above two formula are compared with those from design code. It is found that formula 2 provides the most accurate results; the results based on design code are slightly conservative; formula 1 generally yields the most conservative results.

    摘 要 ……………………………………………………………i ABSTRACT……………………………………………………………iii 誌 謝 ……………………………………………………………iv 目錄 ……………………………………………………………v 表目錄 ……………………………………………………………viii 圖目錄 ……………………………………………………………xvi 第一章 緒論……………………………………………………………1 1.1研究動機與目的 ……………………………………………………………1 1.2 論文架構……………………………………………………………2 第二章 總風力載重效應之設計公式……………………………………………………………3 2.1 前言……………………………………………………………3 2.2 純量載重效應設計公式之文獻回顧……………………………………………………………4 2.2.1 SRSS與CQC……………………………………………………………4 2.2.2 組合因子法……………………………………………………………5 2.2.3 橢圓八邊形法……………………………………………………………6 2.3 向量載重效應設計公式之文獻回顧……………………………………………………………6 2.3.1 Load Reduction Factor(LRF)……………………………………………………………7 2.3.2 洪明德(民國87年)……………………………………………………………7 2.3.3 Solari and Pagnini (1999)……………………………………………………………8 第三章 數值模擬結果之分析及驗證……………………………………………………………11 3.1 前言……………………………………………………………11 3.2 數值模擬……………………………………………………………11 3.2.1 計算域規劃……………………………………………………………12 3.2.2 網格切割設定……………………………………………………………13 3.2.3 數值模擬時間增量……………………………………………………………14 3.2.4 總時間長度……………………………………………………………14 3.2.5 紊流模式之選用……………………………………………………………14 3.2.6 入流邊界風速設定……………………………………………………………15 3.3 CFD數值模擬之結果……………………………………………………………16 3.3.1 三方向之風力歷時……………………………………………………………16 3.3.2 三方向之風力自頻譜與交頻譜……………………………………………………………16 3.3.3 無因次化自頻譜與無因次化交頻譜……………………………………………………………17 3.3.4 網格切割與時間增量對於風力頻譜之影響……………………………………………………………19 3.3.5 CFD結果與風洞實驗之驗證……………………………………………………………20 3.3.6 建築物尺寸對各方向第一振態風力頻譜之影響……………………………………………………………23 3.4 無因次化頻譜變回實際頻譜……………………………………………………………25 3.5小結 ……………………………………………………………27 第四章 第一振態反應之相關係數……………………………………………………………55 4.1 前言 ……………………………………………………………55 4.2 結構動力方程式……………………………………………………………55 4.3 風力載重作用下兩振態間的反應相關係數……………………………………………………………57 4.4 以數值積分求反應相關係數……………………………………………………………59 4.4.1. 建築物基本自然頻率……………………………………………………………61 4.4.2 結構阻尼比……………………………………………………………63 4.4.3 分析範圍……………………………………………………………63 4.5 數值積分求反應相關係數之結果討論與比較 ……………………………………………………………64 4.5.1 利用風洞資料在不同阻尼比下所求位移與加速度間之相關係數…………………………………………………………65 4.5.1.1阻尼比為0.01與0.02的橫風向與扭轉向位移相關係數之比較…………………………………………………………65 4.5.1.2阻尼比為0.01與0.02的橫風向與扭轉向加速度相關係數之比較……………………………………………………65 4.5.1.3阻尼比為0.01與0.02的順風向與扭轉向位移或加速度相關係數之比較………………………………………66 4.5.1.4阻尼比為0.01與0.02的順風向與橫風向位移或加速度相關係數之比較………………………………………66 4.5.2利用風洞資料在不同高寬比下所求位移與加速度間之相關係數……………………………………………………………66 4.5.3利用風洞資料在不同頻率比下所求位移與加速度間之相關係數……………………………………………………………67 4.5.2 風洞資料與AIJ(2004)比較……………………………………………………………67 4.5.3 CFD資料所計算之反應相關係數討論……………………………………………………………69 4.6 小結 ……………………………………………………………70 第五章 建築物頂層角隅處之總振動加速度之設計公式……………………………………………………………110 5.1 前言 ……………………………………………………………110 5.2 以橢圓解析解法推導向量載重效應之設計公……………………………………………………………111 5.3 建築物頂層角隅處之總振動加速度之估計……………………………………………………………114 5.4 本文解法與規範之比較……………………………………………………………117 5.5 公式 2 與 TDC結果相近之討論……………………………………………………………119 第六章 結論與建議 ……………………………………………………………153 6.1 結論 ……………………………………………………………153 6.2 建議 ……………………………………………………………156 參考文獻 ……………………………………………………………157

    1.Architectural Institute of Japan (2004), Recommendations for Loads on Buildings.
    2.Asami, Y. (2000), “Combination method for wind loads on high-rise buildings”, Proceedings of the 16th National Symposium on Wind Engineering, Tokyo, Japan,pp.531-534 (in Japanese)
    3.Asami, Y. (2002), “Correlation method for wind load combinations”, Document presented at Subcommittee on Wind Loading, Architectural Institute of Japan.
    4.Chen X. and Hung G. (2009), “Evaluation of peak resultant response for wind-excited tall buildings” Eng. Struct. 31 858-868.
    5.Chen X. and Kareem A. (2005), “Coupled dynamic analysis and equivalent static wind loads on buildings with three-dimensional modes”, J. Struct. Eng. 131(7) 1071–1082.
    6.Clough, Ray W. and Penzien, Joseph (1993), Dynamics of structures.
    7.Ernesto Heredia-Zavoni (2010), “The complete SRSS modal combination rule”, Earthquake Eng. Struct. Dyn. 40 1181–1196.
    8.Gong, K. and Chen, X. Z. (2014), “Estimating extremes of combined two Gaussian and non-Gaussian response processes”,Journal of Structural Stability and Dynamics Vol. 14, No. 3 1350076 .
    9.Holmes, J.D. (2002), “Effective static load distributions in wind engineering”, Journal of Wind Engineering and Industrial Aerodynamics 90 91–109.
    10.Kasperski, M. and Niemann, H. J. (1992), “The LRC (Load-Response-Correlation) Method: A General Method of Estimating Unfavorable Wind Load Distributions for Linear and Nonlinear Structural Behavior”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 43, pp.1753–1763.
    11.Melbourne, W.H. (1975), “Probability Distributions of Response of BHP House to Wind Action and Model Comparisons”, J.Ind.Aerod. , 167-175.
    12.Robert H. Kraichnan (1969), “Diffusion by a Random Velocity Field”, Dublin, New Hampshire.
    13.Simiu, E. and Scanlan, R.H. (1996), “Wind Effects on Structures: Fundamentals and Applications to Design”, 3 rd Edition, New York, John Wiley and Sons.
    14.Solari, G. and Pagnini, L.C. (1999), “Gust Buffeting and Aeroelastic Behaviour of Poles and Monotubular Towers”, Journal of Fluids and Structures.
    15.Tamura, Y., Kim, C.Y., Kikuchi, H. and Hibi, K. (2014), “Correlation and combination of wind force components and responses”, Class notes for advanced school on wind engineering, Taipei, Taiwan.
    16.Tamura, Y., Ohkuma, T., Kawai, H., Uematsu, Y. and Kondo, K. (2004), “Revision of AIJ Recommendations for Wind Loads on Buildings”, Proceedings of the 2004 Structures Congress.
    17.Wen, Y.K. (1990), Structural Load Modeling and Combination for Performance and Safety Evaluation.
    18.Yang, C.Y. (1985), Random Vibration of Structures.
    19.內政部營建署,「建築物耐風設計規範及解說」,2015。
    20.洪明德,「建築物總風力載重不確定性之分析」,碩士論文,國立台灣科技大學營建工程系,(民國87年)。
    21.呂良正,楊永斌,「以微震量測探討鋼筋混凝土構造建築物之基本振動周期」,內政部建築研究所委託研究報告,(民國88年)。
    22.高士哲,「非穩態風速與矩形建築風載重機率模式之建立及可靠度分析」,博士論文,國立台灣科技大學營建工程系,(民國102年)。
    23.顏靖偉,「方形斷面建築純量風力載重效應之組合」,碩士論文,國立台灣科技大學營建工程系(民國103年)。
    24.鄭啟明、吳重成、楊承翰,「高層建築耐風設計風力頻譜與風載重之修訂研究」,內政部建築研究所研究報告,(民國96年)。
    25.方富民,「建築結構所受風力之數值模擬與風洞實驗比較驗證研究」,內政部建築研究所委託研究報告,(民國97年)。
    26.林建宏,「建築物氣彈力反應數值模式建構與風洞試驗研究」,內政部建築研究所委託研究報告,(民國100年)。

    無法下載圖示 全文公開日期 2020/08/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE