簡易檢索 / 詳目顯示

研究生: 許智穎
Chih-Ying Hsu
論文名稱: 燒結與溝槽式複合毛細結構微熱管之製造與實驗研究
Fabrication and Experimental Study of Composite Heat Pipe with a Sintered/Grooved Wick
指導教授: 林顯群
Sheam-chyun Lin
口試委員: 李基禎
Ji-Jen Lee
陳呈芳
cheng fang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 125
中文關鍵詞: 最大熱傳量滲透率毛細力複合式毛細結構溝槽式燒結式熱管
外文關鍵詞: maximum heat transfer rate, porosity, permeability, sintering, groove, composite wick, heat pipe
相關次數: 點閱:296下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究之目的為製造高效能之燒結與溝槽複合式毛細結構微熱管,以應用於新型電腦之高性能散熱模組,其原理是採溝槽式毛細結構來加強燒結式毛細結構之滲透率,同時以燒結式毛細結構提升溝槽式毛細結構之毛細力。首先經由理論分析燒結式毛細結構與溝槽式毛細結構的特性,包含毛細半徑、孔隙度、滲透率與工質填充量的不同,並依理論結果設計出熱管之製造參數。在完成初步設計後,研擬建立複合式熱管製造與測試設備及製程,最後進行熱管實作與性能測試,製作不同熱管長度,並改變不同燒結長度以探討重力影響下之操作角度對熱傳性能的影響。
在性能測試方面,先比較燒結式與溝槽式毛細結構的性能差異,結果顯示重力對燒結式毛細結構熱管的影響很小,但長度增長時液相壓降愈大,以致最大熱傳量會愈低,而溝槽式毛細結構熱管的毛細力低,20˚以上的傾角即無法傳遞熱能,但其毛細結構之滲透率高,使水平測試下的效能可高出燒結式毛細結構熱管的50%。至於複合式毛細結構熱管之最大熱傳量會依其燒結長度而有所改變,當燒結長度愈短時,其滲透率高而毛細力低,故重力對最大熱傳量影響大,在水平測試下的最大熱傳量可高出燒結式熱管之2倍;當燒結長度愈長時,其滲透率低而毛細力高,水平測試下之最大熱傳量可高出燒結式熱管60%的效能,由本研究之結果可知,利用調整其燒結長度,可在滲透率與毛細力間加強其不足,得到高於單一毛細結構之效能的熱管。


This experimental and fabrication investigation aims to develop and manufacture a high-efficiency composite heat pipe incorporated with the thermal module for the thermal management of advanced computers. The fundamental concept is taking advantage of both the high permeability of grooved wick and the strong capillary force of sintered wick. In this study, the sintered and grooved wicks are combined together to form a composite wick structure in enforcing the maximum heat-transfer capability for this micro heat pipe. At first, an appropriate set of processing parameters are determined from the theoretical analysis on capillary radius, porosity, permeability, and the amount of working mediums for this heat pipe. Then, the manufacture facility, process procedure, and performance test system are set up to perform a parametric study on the influences of sintered-wick length, heat-pipe length, and inclined angle.
To serve as the comparison foundation, the performance differences between the sintered and the grooved wick structures are obtained on this test platform. It is found that gravity has little impact on the sintered heat pipe while a strong downgrade is observed for an increasing heat pipe length. Also, due to the weak capillary force, the grooved wick structure can not function normally at a 20° inclination angle; however, a 50% performance enhancement compared to sintered wick is observed under horizontal position due to the high permeability.
Regarding the composite-wick heat pipe, it is demonstrated that the maximum heat transfer rate varies significantly with the length of sintered wick under both positive and negative inclination angles. Clearly, the shorter the sintered wick is, the higher the permeability and the weaker the capillary force will be. Thus, gravity has significant influences on maximum heat transfer rate, which can be twice as much as that of the sintered heat pipe under level test. In the other end, the longer the sintered wick is, the lower the permeability and the higher the capillary force will be. Nevertheless, the maximum heat transfer rate still can be 60% times as much as that of the sintered heat pipe at the worst case. In summary, the performance of this composite heat pipe is superior to both of the sintered-wick and grooved-wick heat pipe. Moreover, to meet the specified need for different applications, it is possible for engineers to reinforce the permeability or the capillary force to obtain a better heat pipe by adjusting the length of sintered wick

中文摘要....................................................................................................I 英文摘要..................................................................................................III 誌謝...........................................................................................................V 目錄..........................................................................................................VI 圖索引...................................................................................................VIII 表索引.....................................................................................................XII 符號索引...............................................................................................XIV 第一章 緒論..............................................................................................1 1.1 前言...............................................................................................1 1.2 文獻回顧.......................................................................................5 1.2.1熱管的早期發展...................................................................5 1.2.2熱管應用於電子裝置...........................................................8 1.2.3國內對熱管之研究.............................................................10 1.3 研究目的.....................................................................................14 第二章 熱管原理與理論分析................................................................16 2.1 熱管操作原理.............................................................................16 2.2 限制分析.....................................................................................19 2.2.1毛細極限..............................................................................20 2.2.2攜帶極限..............................................................................30 2.2.3黏滯極限..............................................................................31 2.2.4音速極限..............................................................................32 2.2.5沸騰極限..............................................................................32 2.3 理論工質填充量........................................................................33 2.4熱阻..............................................................................................34 第三章 實驗規劃與製作........................................................................38 3.1熱管的設計...................................................................................38 3.1.1 工作流體的選擇................................................................40 3.1.2 管殼材料的選擇................................................................44 3.1.3 毛細結構的選擇................................................................46 3.2熱管製作流程..............................................................................49 第四章 實驗設備與步驟........................................................................60 4.1實驗設備......................................................................................60 4.1.1製造設備.............................................................................60 4.1.2測試設備.............................................................................68 4.2熱管之熱響應測試......................................................................76 4.3最大熱傳率的判定與測試方法...................................................78 4.3.1最大熱傳率測試理論..........................................................78 4.3.2最大熱傳率測試步驟..........................................................81 第五章 實驗結果與討論........................................................................86 5.1燒結式與溝槽式毛細結構熱管之效能測試...............................86 5.2複合式毛細結構熱管之效能測試...............................................95 5.2.1單一熱管長度下不同燒結長度對測試傾角的效能影響..95 5.2.2單一傾角下燒結長度依熱管長度的效能影響................105 5.2.3單一燒結長度下不同熱管長度對測試傾角的影響........111 第六章 結論與未來工作......................................................................117 6.1結論.............................................................................................117 6.2未來工作.....................................................................................119 參考文獻................................................................................................121

[1] http://www.apa.com.tw/pj30pg186.asp?tag=2773
[2] http://www.taisol.com.tw/products/products-customheatpipes.htm
[3] http://campaign.hncb.com.tw/intranet/monthly/mon064/06403.pdf
[4] Gaugler, R. S., US Patent Application, Dec. 12, 1942, Published US Patent No. 2350348, June 1944.
[5] Grover, G. M., Cotter, T. P., and Erickson, G. F., ”Structure of Very High Thermal Conductance,” Journal of Applied PHYS., Vol. 35, 1964.
[6] Grover, G. M., US Patent No. 322975, Filed 1963.
[7] Dunn, P. D. and Reay, D. A., “Heat Pipes,” Pergamon, Oxford, 1994.
[8]李亭寒,華誠生,熱管設計與應用,化學工業出版社,北京,1987。
[9] Peterson, G. P., “An Introduction to Heat Pipes”, Wiley, New York, 1994.
[10] Faghri, A., ”Heat Pipe Science and Technology,” Taylor and Francis, Washington, DC, 1995
[11] 依日光譯,”熱管技術理論實務,”日本熱管技術協會編,復漢出版社,1986年.
[12]Chi, S. W., “Heat Pipe Theory and Practice,” McGraw-Hill, New York, 1976.
[13] Cotter, T. P., ”Theory of Heat Pipes,” Los Alamos Science Lab, Report No. LA-3246-MS, 1965.
[14] Busse, C. A., ”Pressure Drop in the Vapor Phase of Long Heat Pipes,” Proc. IEEE Conf. of Thermionic Conversion Specialists, Palo Alto, CA, pp. 391-398, 1967
[15] Cotter, T. P., ”Heat Pipe Startup Dynamics,” Proc. IEEE Conf. of Thermionic Conversion Specialists, Palo Alto, CA, pp 344-348, 1967.
[16] Levy, E. K., ”Theoretical Investigation of Heat Pipes Operating at Low Vapor Pressure,” Journal of Engineering for Industry, Vol. 90, pp. 547-552, 1968.
[17] Tien, C. L. and Sun, K. H., “Minimum Meniscus Radius of Heat Pipe with a Wicking Materials,” Int. J. Heat Mass Transfer, Vol. 14, pp. 1853-1855, 1970.
[18] Asselman, G. A. and Green, D. B., ”Heat Pipes,” Phillips Technical Review, Vol. 16, pp. 169-186, 1973.
[19] Busse, C. A., “Theory of the Ultimate Heat Transfer Limit of Cylindrical Heat Pipes,” Int. J. Heat Mass Transfer, Vol. 16, pp. 169-186, 1973.
[20] Busse, C. A and Kemme, J. E., ”Dry Out Phenomena in Gravity Assist Heat Pipes with Capillary Flow,” Int. J. of Heat Mass Transfer, Vol. 23, pp. 643-654, 1979.
[21] Udell, K. S., “Heat Transfer in Porous Media Heated from above with Evaporation, Condensation, and Capillary Effects,” ASME J. Heat Transfer, Vol. 105, pp. 485-492, 1983.
[22] Peterson, G. P. and Fletcher, L. S., ”Effective Thermal Conductivity of Sintered Heat Pipe Wicks,” J. Thermophysics, Vol. 1, No. 4, pp. 183-314, Oct. 1987.
[23] Mantle, W. J. and Chang, W. S., “Effective Thermal Conductivity of Sintered Metal Fibers”, Proc. of the 24th Intersociety Energy Coversion Engineering Conference, IECEC-89, Vol. 4, pp. 1871-1877, 1989.
[24] Plesch, D., Bier, W., Seidel, D., and Schubert, K., ” Miniature Heat Pipes for Heat Removal from Microelectronic Circuits,” Proc. ASME Annual Meeting, Atlanta, GA, 1991.
[25] Zhou, J. and Zhu, J., “Experimental Investigation of Application Characters of Micro Heat Pipes,” Heat Pipe Conf., Beijing, China, 1992.
[26] Cotter, T. P., ”Principles and Prospects for Micro Heat Pipes,” Porc. 5th Int. Heat Pipe Conf., Tsukuba, Japan, pp. 328-335, 1984.
[27] Mochizuki, M., ”Hinged Heat Pipes for Cooling Notebook PCs”, IEEE, SEMI-THERM XIII, pp. 64-72, 1997.
[28] Cao, Y., Gao, M., Beam, J ed Heat Pipes for Cooling Notebook PCs”, IEEE, 1997..E., and Donovan, B., ”Experiments and Analysis of Flat Miniature Heat Pipes,” AIAA Journal of Thermophysics and Heat Transfer, Vol. 11, No. 2, pp. 158-164, 1997.
[29] Xie, H., Ali, A., and Bhatia, R., “The Use of Heat Pipes in Personal Computers,” The Sixth InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems,” 1998.
[30] Cao, Y., Gao, M., and Pinilla, E., “Fabrication and Test of a Filling station for Micro/Miniature Devices,” Proceedings of the 32nd Intersociety Energy Conversion Engineering Conference, Vol. 2, pp. 1509-1513, 1998.
[31] Toth, J., DeHoff, R., and Grubb, K., “Heat Pipes : the Silent Way to Manage Desktop Thermal Problems,” Thermacore America Inc., 1998.
[32] Sauciuc, Ioan, Mochizuki, M., Mashiko, K., Saito, Y., and Nguyen, T., ”The Design Testing of the Super Fiber Heat Pipes for Electronics Cooling Applications,” Fujikura America Inc, 2000.
[33]張長生, ”熱管技術應用研究計畫,” 工研院能資所,1993年.
[34]陳明生, ”小型熱管製造、性能測試與輸送現象之研究,” 台北科技大學機電整合研究所碩士論文, 1999年.
[35]卓世傑, ”銅粉燒結型微熱管之研究,” 台北科技大學機電整合研究所碩士論文, 1999年.
[36]賴錦川, ”燒結式微熱管毛細結構參數之影響研究,” 台灣大學機械工程學研究所碩士論文, 2000年.
[37]黃文宏, ”燒結式微熱管之製造與性能測試,” 台灣大學機械工程學研究所碩士論文,2000年.
[38]詹瑞華, ”燒結式微熱管之熱傳增強研究,” 台灣大學機械工程學研究所碩士論文,2001年.
[39]劉榮祥, ”燒結式微熱管之製造與實驗研究,” 台灣科技大學機械工程研究所碩士論文, 2003年.
[40]賈進強, ”燒結式扁型熱管熱傳分析與實驗,” 海洋大學機械與機電工程研究所碩士論文,2005年.
[41]汪永川, ” 燒結毛細結構在熱管內的熱流特性” 清華大學動力機械工程研究所碩士論文,2006年.
[42]沈志宏, ” 成型加工對於熱管性能影響之探討,” 大同大學機械工程研究所碩士論文,2007年.
[43]曾昭源, ” 折彎及壓扁後製程對燒結式熱管毛細結構之影響,” 大同大學材料工程研究所碩士論文,2007年.
[44]李青洲, ”熱管之最大熱傳率與有效長度之關係, ”台灣科技大學機械工程研究所碩士論文, 2000年.
[45]林鴻文, ” 微型熱管系統散熱實驗與最大熱傳率之理論模式建立,” 清華大學工程與系統科學研究所碩士論文, 2002年.
[46]詹耀程, ”以蒸發部溫度動態行為分析微小熱管之最大熱傳率,” 清華大學工程與系統科學研究所碩士論文,2005年.
[47]黃彥銘, ” 以動態溫度追踨法量測熱管最大熱傳量之實驗設計,” 清華大學工程與系統科學研究所碩士論文,2006年.
[48]張文輝, ”熱管最大熱傳率測試機台之研製,” 台北科技大學機電整合研究所碩士論文,2007年.
[49]Kadoguchi, K., Fukano, T., and Emi, Y., “Operating Limit of Closed Two-Phase Thermosyphone with a Binary Mixture,” The Tenth International Heat Transfer Conference,” Vol. 7, pp. 449-454, 1994.
[50]蘇青森,”真空技術,” 東華書局, 1990年.
[51] http://www.fujikura.co.jp/00/gihou/gihou108/108_06.html
[52] http://www.fea.com.tw/v_chinese/products01.htm

QR CODE