簡易檢索 / 詳目顯示

研究生: 王宏志
Hung-Chih Wang
論文名稱: 智慧型手機結合比色式血糖檢測系統的設計、製造和臨床試驗
Design, Fabrication, and Clinical Trial of a Colorimetric Detection System with a Smartphone for Self­Monitoring Blood Glucose
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 鄭逸琳
Yih-Lin Cheng
林承哲
Cheng-Jhe Lin
蔡東孟
Tung-Meng Tsai
謝嵩淮
Sung-huai Hsieh
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 113
中文關鍵詞: 比色式試紙血糖檢測設備智慧型手機臨床試驗
外文關鍵詞: Colorimetric blood strip, Blood glucose meter, Smartphone, Clinical trial
相關次數: 點閱:267下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

維持適當的胰島素水平(Insulin Level)對糖尿病患者非常重要。研究指出,規律監測血糖可以維持體內胰島素水平,有效降低嚴重疾病及併發症的發生,進而改善死亡率發生的風險。然而,現有的血糖量測設備操作過程複雜且攜帶不便,降低了糖尿病患者進行自我監測血糖 (Self­Monitoring of Blood Glucose, SMBG) 的意願。
為了簡化血糖量測步驟以及改善攜帶的便利性,進而提高糖尿病患 者自我檢測血糖意願,本研究展示了一種新型的 SMBG 系統。此新型的SMBG 系統的最大特色是所設計出的整合型血糖檢測裝置(Integrated Detection Device for Blood Glucose, IDDBG) 中所有的組件均不含電子元件。該系統檢測原理是利用智慧型手機的光學感應相機模組對 IDDBG 裝置中的比色式的血糖試紙進行顏色差異性分析,所分析的數值利用智慧型手機中的血糖檢測應用程式轉換成血糖濃度值。
本研究與中國醫藥大學附設醫院合作,招募了 120 位來自不同年齡層的糖尿病患者參與臨床試驗,讓使用者親自操作 SMBG 系統量測血糖, 其數值將與 YSI­2300 血糖分析儀進行準確性比較,最後並針對易用性(usability) 進行問卷調查。其目的是為確認該新型 SMBG 系統的準確性能否符合 ISO15197:2013 規範以及了解是否有效改善糖尿病患檢測血糖操作及攜帶便利性。
從臨床實驗結果分析,三個不同批號的 IDDBG 裝置所得到的準確性數值分別為 97.43%–97.56% 之間,其結果符合 ISO 15197:2013 所規範準確度需 95% 以上要求。而一致性誤差網格 (Consensus Error Grid, CEG) 分析結果 100% 都落在 A 區(臨床準確區)和 B 區(臨床可接受區),其結果符合 CEG 要求。從問卷調查結果得知,使用者實際操作新型 SMBG 系統量測血糖後,有 97.5% 的使用者認為操作十分簡易,更有100% 的使用者認為該新型 SMBG 系統設計提升了攜帶便利性。
本研究設計結合智慧型手機檢測血糖是一種創新的 SMBG 系統,它簡化了血糖檢測的方法以及導入小型化的設計,達到操作及攜帶便利性之 功能,更重要的是擁有高準確性。此系統有助於提高糖尿病患者對血糖量測意願,更可以讓病患利用智慧型手機的多功能性達成行動醫療的目標。 關鍵字: 比色式試紙、血糖檢測設備、智慧型手機、臨床試驗


Maintaining appropriate insulin levels is very important for patients with diabetes. Studies have pointed out that regular monitoring of blood glucose can maintain appropriate insulin levels in the body, effectively reducing the occurrence of serious diseases and complications and the risk of mortality. Nevertheless, existing blood meters employ a series of complex steps for measuring the blood glucose level and are in­ convenient for carrying, which reduces the willingness of the diabetes patients to engage in the self­monitoring of blood glucose (SMBG).
To reduce the steps associated with measuring the blood glucose level, to improve portability, and to increase the willingness of the diabetes patients to engage in SMBG, a novel SMBG system is proposed in this study. The most important innovation with respect to SMBG is developing an integrated detection device for blood glucose (IDDBG), which does not contain electronic components. The novel SMBG system uses a smartphone with a camera to analyze the differences in the colorimetric blood strip of the IDDBG. These data are converted to the blood glucose level using a smartphone application.
This study was performed in collaboration with China Medical University Hospital, and 120 diabetes patients in different age groups were enrolled in a clinical trial study. These patients used the novel SMBG system to measure their blood glucose levels; the acquired data were compared with the results obtained using a YSI­2300 blood analysis instrument. Finally, a questionnaire survey was conducted for assessing the users’experience.
According to the analysis of the clinical trial results, the accuracy of the data measured using the novel SMBG system for three different lots was in the 97.43%–97.56% range, which is above the minimally acceptable 95% accuracy for the ISO 15197:2013 criteria. In addition, 100% of the results of the consensus error grid (CEG) analysis were in area A (clinical accuracy area) and area B (clinically acceptable area), meeting the CEG requirements. According to the analysis of the usability survey of the study participants who used the novel SMBG system for measuring their blood glucose levels, 97.5% of the participants felt that the operation was effortless, and 100% of the participants reported that the novel SMBG system had improved portability.
The system that uses a smartphone to detect blood glucose levels is an innovative SMBG system. It simplifies the blood glucose level determination and enables miniaturization for convenient operation and portability. More importantly, it has high accuracy. The proposed system can improve the willingness of the diabetes patients to engage in blood glucose self­monitoring and will enable patients to achieve the mHealth goal by utilizing the versatility of smartphones.

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . vi Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Research Motivation and Purpose . . . . . . . . . . . . . 4 1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . 6 1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Literature Reviews . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 Fundamentals of the biosensor theory . . . . . . . . . . . 8 2.2 Historical background on biosensors . . . . . . . . . . . . 9 2.2.1 First­generation glucose biosensors . . . . . . . . 11 2.2.2 Second­generation glucose biosensors . . . . . . . 12 2.2.3 Third­generation glucose biosensors . . . . . . . . 15 2.2.4 Colorimetric biosensors . . . . . . . . . . . . . . 17 2.2.5 Smartphone­based biosensors . . . . . . . . . . . 18 2.3 Continuous glucose monitoring systems (CGMS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 Methods for quantification of blood glucose levels . . . . 19 2.4.1 Hexokinase­based method . . . . . . . . . . . . . 20 2.4.2 Glucose oxidase (GOx)­based method . . . . . . . 21 2.4.3 Glucose dehydrogenase (GDH)­based method . . . 22 3 Design and optical simulation . . . . . . . . . . . . . . . . . . . 25 3.1 Optical simulation process . . . . . . . . . . . . . . . . . 25 3.2 IDDBG design . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.1 CTS . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.2 IALE . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.3 Alignment plate . . . . . . . . . . . . . . . . . . . 28 3.2.4 Reflector channel . . . . . . . . . . . . . . . . . . 29 3.2.5 Disposable blood lancet . . . . . . . . . . . . . . 29 3.2.6 Smartphone as a light source . . . . . . . . . . . . 30 3.3 Simulation and measurement method . . . . . . . . . . . . 34 3.4 Optical light­tracking simulation results . . . . . . . . . . 38 3.4.1 Relationship between illuminance and the height of the reflector channel . . . . . . . . . . . . . . . 38 3.4.2 Relationship between the illuminance uniformity and the RA of reflector channel . . . . . . . . . . 41 4 Experiment Methods and Clinical Trials . . . . . . . . . . . . . 43 4.1 Fabrication of IDDBG components . . . . . . . . . . . . . 44 4.2 Validation of the illuminance and illumination uniformity of the CTS area . . . . . . . . . . . . . . . . . . . . . . . 47 4.3 Collection of whole blood samples . . . . . . . . . . . . . 49 4.4 Colorimetric enzyme reaction analysis and establishment of the signal reference mainline . . . . . . . . . . . . . . . 50 4.5 Pre­clinical trial plan for evaluation the developed SMBG system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6 Clinical trial plan for validating the developed SMBG system 53 4.6.1 Clinical trial design . . . . . . . . . . . . . . . . . 53 4.6.2 Clinical trial process . . . . . . . . . . . . . . . . 54 4.6.3 Usability and user experience surveys . . . . . . . 56 5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 58 5.1 Illuminance and illuminance uniformity of the CTS area results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.2 Analysis the RGB signal results . . . . . . . . . . . . . . 60 5.3 Accuracy and stability tests for the signal reference mainline 62 5.4 Pre­clinical trial results for the developed SMBG system . 63 5.5 Created the signal reference mainline for the clinical trial . 66 5.6 Clinical trial result for the developed SMBG system . . . . 68 5.7 Usability and user experience surveys results . . . . . . . 71 6 Conclusions and future prospects . . . . . . . . . . . . . . . . . 75 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

[1] N. Cho, J. Shaw, S. Karuranga, Y. Huang, J. D. da Rocha Fernandes, A. Ohlrogge, and B. Malanda, “IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045,” Diabetes Research and Clinical Practice, vol. 138, 02 2018.
[2] D. G. Gardner and D. Shoback, Greenspan’s Basic & Clinical Endocrinology. McGraw­Hill Medical„ 2011.
[3] “About Diabetes,” World Health Organization. Archived from the original on 31 March 2014. Retrieved 4 April 2014., 2014.
[4] “Diabetes Fact sheet N°312,” WHO. October 2013. Archived from the original on 26 August 2013. Retrieved 25 March 2014., 2011.
[5] N. Poolsup, N. Suksomboon, and S. Rattanasookchit, “Meta analysis of the benefits of self­monitoring of blood glucose on glycemic control in type 2 diabetes patients: an update,” Diabetes Technology & Therapeutics, vol. 11, no. 12, pp. 775–784, 2009.
[6] S. Skeie, G. B. Kristensen, S. Carlsen, and S. Sandberg, “Self­ monitoring of blood glucose in type 1 diabetes patients with insufficient metabolic control: focused self­monitoring of blood glucose intervention can lower glycated hemoglobin A1C,” Journal of Diabetes Science and Technology, vol. 3, no. 1, pp. 83–88, 2009.
[7] S. L. Tunis and M. E. Minshall, “Self­monitoring of blood glucose (SMBG) for type 2 diabetes patients treated with oral anti­diabetes drugs and with a recent history of monitoring: cost­effectiveness in the US,” Current Medical Research and Opinion, vol. 26, no. 1, pp. 151–162, 2010.
[8] E. I. Boutati and S. A. Raptis, “Self­monitoring of blood glucose as part of the integral care of type 2 diabetes,” Diabetes Care, vol. 32, no. suppl 2, pp. S205–S210, 2009.
[9] L. Jovanovic, “Using meal­based self­monitoring of blood glucose as a tool to improve outcomes in pregnancy complicated by diabetes,” Endocrine Practice, vol. 14, no. 2, pp. 239–247, 2008.
[10] M. J. O’Kane and J. Pickup, “Self­monitoring of blood glucose in diabetes: is it worth it?,” Annals of Clinical Biochemistry, vol. 46, no. 4, pp. 273–282, 2009.
[11] R. Weiss and I. Lazar, “The need for continuous blood glucose monitoring in the intensive care unit,” Journal of Diabetes Science and Technology, vol. 1, no. 3, pp. 412–414, 2007.
[12] C. P. Price, “Point­of­care testing in diabetes mellitus,” Clinical Chemistry and Laboratory Medicine, vol. 41, no. 9, pp. 1213–1219, 2003.
[13] A. Heller and B. Feldman, “Electrochemical glucose sensors and their applications in diabetes management,” Chemical Reviews, vol. 108, no. 7, pp. 2482–2505, 2008.
[14] S. B. Bankar, M. V. Bule, R. S. Singhal, and L. Ananthanarayan, “Glucose oxidase– an overview,” Biotechnology Advances, vol. 27, no. 4, pp. 489–501, 2009.
[15] K. Habermüller, M. Mosbach, and W. Schuhmann, “Electrontransfer mechanisms in amperometric biosensors,” Fresenius’ Journal of Analytical Chemistry, vol. 366, no. 6­7, pp. 560–568, 2000.
[16] J. Pearson, A. Gill, and P. Vadgama, “Analytical aspects of biosensors,” Annals of Clinical Biochemistry, vol. 37, no. 2, pp. 119–145, 2000.
[17] D. R. Thevenot, K. Toth, R. A. Durst, and G. S. Wilson, “Electrochemical biosensors: recommended definitions and classification,” Pure and Applied Chemistry, vol. 71, no. 12, pp. 2333–2348, 1999.
[18] D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, “Electrochemical biosensors­sensor principles and architectures,” Sensors, vol. 8, no. 3, pp. 1400–1458, 2008.
[19] C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, “Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene,” Analytical Chemistry, vol. 81, no. 6, pp. 2378– 2382, 2009.
[20] X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, “Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing,” Biosensors and Bioelectronics, vol. 25, no. 4, pp. 901–905, 2009.
[21] S. Dzyadevych, V. Arkhypova, A. Soldatkin, A. El’Skaya,
C. Martelet, and N. Jaffrezic­Renault, “Amperometric enzyme biosensors: Past, present and future,” Irbm, vol. 29, no. 2­3, pp. 171– 180, 2008.
[22] B. H. Ginsberg, “Factors affecting blood glucose monitoring: sources of errors in measurement,” Journal of Diabetes Science and Technology, vol. 3, no. 4, pp. 903–913, 2009.
[23] A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang,
S. Min, A. Banks, P. Bastien, et al., “A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat,” Science Translational Medicine, vol. 8, no. 366, pp. 366ra165– 366ra165, 2016.
[24] B.­H. Hou, H. Takanaga, G. Grossmann, L.­Q. Chen, X.­Q. Qu,
A. M. Jones, S. Lalonde, O. Schweissgut, W. Wiechert, and W. B. Frommer, “Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells,” Nature Protocols, vol. 6, no. 11, p. 1818, 2011.
[25] A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” Journal of the American Chemical Society, vol. 124, no. 35, pp. 10596–10604, 2002.
[26] X.­D. Wang, T.­Y. Zhou, X. Chen, K.­Y. Wong, and X.­R. Wang, “An optical biosensor for the rapid determination of glucose in hu­ man serum,” Sensors and Actuators B: Chemical, vol. 129, no. 2, pp. 866–873, 2008.
[27] G. Chang, Y. Tatsu, T. Goto, H. Imaishi, and K. Morigaki, “Glucose concentration determination based on silica sol–gel encapsulated glucose oxidase optical biosensor arrays,” Talanta, vol. 83, no. 1, pp. 61–65, 2010.
[28] D. J. Soldat, P. Barak, and B. J. Lepore, “Microscale colorimetric analysis using a desktop scanner and automated digital image analysis,” Journal of Chemical Education, vol. 86, no. 5, p. 617, 2009.
[29] K. Tohda and M. Gratzl, “Micro­miniature autonomous optical sensor array for monitoring ions and metabolites 1: design, fabrication, and data analysis,” Analytical Sciences, vol. 22, no. 3, pp. 383–388, 2006.
[30] L. Shen, J. A. Hagen, and I. Papautsky, “Point­of­care colorimetric detection with a smartphone,” Lab on a Chip, vol. 12, no. 21, pp. 4240–4243, 2012.
[31] J. P. Devadhasan, H. Oh, C. S. Choi, and S. Kim, “Whole blood glucose analysis based on smartphone camera module,” Journal of Biomedical Optics, vol. 20, no. 11, p. 117001, 2015.
[32] Y. Wang, X. Liu, P. Chen, N. T. Tran, J. Zhang, W. S. Chia, S. Boujday, and B. Liedberg, “Smartphone spectrometer for colorimetric biosensing,” Analyst, vol. 141, no. 11, pp. 3233–3238, 2016.
[33] Y. Wu, A. Boonloed, N. Sleszynski, M. Koesdjojo, C. Armstrong,
S. Bracha, and V. T. Remcho, “Clinical chemistry measurements with commercially available test slides on a smartphone platform: Colorimetric determination of glucose and urea,” Clinica Chimica Acta, vol. 448, pp. 133–138, 2015.
[34] C. H. Raine III, L. E. Schrock, S. V. Edelman, S. R. D. Mudaliar,
W. Zhong, L. J. Proud, and J. L. Parkes, “Significant insulin dose errors may occur if blood glucose results are obtained from miscoded meters,” Journal of Diabetes Science and Technology, vol. 1, no. 2, pp. 205–210, 2007.
[35] International Organization for Standardization, “ISO 15197:2013. In vitro diagnostic test systems – Requirements for blood­glucose monitoring systems for self­testing in managing diabetes mellitus,” 2013.
[36] M. Erbach, G. Freckmann, R. Hinzmann, B. Kulzer, R. Ziegler,
L. Heinemann, and O. Schnell, “Interferences and limitations in blood glucose self­testing: an overview of the current knowledge,” Journal of Diabetes Science and Technology, vol. 10, no. 5, pp. 1161–1168, 2016.
[37] A. Baumstark, S. Pleus, C. Schmid, M. Link, C. Haug, and G. Freckmann, “Lot­to­lot variability of test strips and accuracy assessment of systems for self­monitoring of blood glucose according to ISO 15197,” Journal of Diabetes Science and Technology, vol. 6, no. 5, pp. 1076–1086, 2012.
[38] G. Freckmann, M. Link, C. Schmid, S. Pleus, A. Baumstark, and
C. Haug, “System accuracy evaluation of different blood glucose monitoring systems following ISO 15197: 2013 by using two different comparison methods,” Diabetes technology & therapeutics, vol. 17, no. 9, pp. 635–648, 2015.
[39] A. P. Turner, “Biosensors–sense and sensitivity,” Science, vol. 290, no. 5495, pp. 1315–1317, 2000.
[40] L. C. Clark Jr et al., “Electrode systems for continuous monitoring in cardiovascular surgery.,” Annals of the New York Academy of sciences, vol. 102, pp. 29–45, 1962.
[41] S. Updike and G. Hicks, “The enzyme electrode,” Nature, vol. 214, no. 5092, pp. 986–988, 1967.
[42] A. Hiratsuka, K. Fujisawa, and H. Muguruma, “Amperometric biosensor based on glucose dehydrogenase and plasma­polymerized thin films,” Analytical Sciences, vol. 24, no. 4, pp. 483–486, 2008.
[43] B. Nikhil, J. Pawan, F. Nello, and E. Pedro, “Introduction to biosensors,” Essays in Biochemistry, vol. 60, no. 1, pp. 1–8, 2016.
[44] J. P. Chambers, B. P. Arulanandam, L. L. Matta, A. Weis, and J. J. Valdes, “Biosensor recognition elements,” tech. rep., Texas Univ at San Antonio Dept of Biology, 2008.
[45] S. S. Iqbal, M. W. Mayo, J. G. Bruno, B. V. Bronk, C. A. Batt, and
J. P. Chambers, “A review of molecular recognition technologies for detection of biological threat agents,” Biosensors and Bioelectronics, vol. 15, no. 11­12, pp. 549–578, 2000.
[46] M. Cremer, Über die Ursache der elektromotorischen Eigenschaften der Gewebe, zugleich ein Beitrag zur Lehre von den polyphasischen Elektrolytketten. R. Oldenbourg, 1906.
[47] W. S. Hughes, “The potential difference between glass and electrolytes in contact with the glass,” Journal of the American Chemical Society, vol. 44, no. 12, pp. 2860–2867, 1922.
[48] J. Nelson and E. G. Griffin, “Adsorption of invertase.,” Journal of the American Chemical Society, vol. 38, no. 5, pp. 1109–1115, 1916.
[49] E. G. Griffin and J. Nelson, “The influence of certain substances on the activity of invertase.,” Journal of the American Chemical Society, vol. 38, no. 3, pp. 722–730, 1916.
[50] W. R. Heineman and W. B. Jensen, “Leland c. clark jr.(1918–2005),”
Biosensors and Bioelectronics, vol. 8, no. 21, pp. 1403–1404, 2006.
[51] E.­H. Yoo and S.­Y. Lee, “Glucose biosensors: an overview of use in clinical practice,” Sensors, vol. 10, no. 5, pp. 4558–4576, 2010.
[52] K. M. West, J. H. Stein, and T. J. Sanders, “Dextrostix estimates of blood glucose in mass screening for diabetes.,” American Journal of Public Health and the Nations Health, vol. 56, no. 12, pp. 2059– 2065, 1966.
[53] S. Updike and G. Hicks, “Reagentless substrate analysis with immobilized enzymes,” Science, vol. 158, no. 3798, pp. 270–272, 1967.
[54] G. G. Guilbault and J. G. Montalvo Jr, “Urea­specific enzyme electrode,” Journal of the American Chemical Society, vol. 91, no. 8, pp. 2164–2165, 1969.
[55] J. Wang, “Electrochemical glucose biosensors,” Chemical reviews, vol. 108, no. 2, pp. 814–825, 2008.
[56] S. P. Nichols, A. Koh, W. L. Storm, J. H. Shin, and M. H. Schoenfisch, “Biocompatible materials for continuous glucose monitoring devices,” Chemical reviews, vol. 113, no. 4, pp. 2528–2549, 2013.
[57] H. G. Curme, R. Columbus, G. M. Dappen, T. W. Eder, W. D. Fel­ lows, J. Figueras, C. P. Glover, C. Goffe, D. E. Hill, W. H. Lawton, et al., “Multilayer film elements for clinical analysis: general con­ cepts.,” Clinical Chemistry, vol. 24, no. 8, pp. 1335–1342, 1978.
[58] V. Marks and K. G. M. M. Alberti, Clinical biochemistry nearer the patient II, vol. 11. London: Bailliere Tindall, 1986:129­40.
[59] K. J. Cash and H. A. Clark, “Nanosensors and nanomaterials for monitoring glucose in diabetes,” Trends in molecular medicine, vol. 16, no. 12, pp. 584–593, 2010.
[60] J. Wang, “Chapter 3. electrochemical glucose biosensors,” Chemical reviews, vol. 108, pp. 814–25, 03 2008.
[61] S. Sharma, “Development of a nanoparticle based glucose biosensor,” 2012.
[62] J. Liu and J. Wang, “A novel improved design for the first­generation glucose biosensor,” Food technology and biotechnology, vol. 39, no. 1, pp. 55–58, 2001.
[63] J. Wang, L. Chen, and M.­P. Chatrathi, “Evaluation of different fluorocarbon oils for their internal oxygen supply in glucose microsensors operated under oxygen deficit conditions,” Analytica chimica acta, vol. 411, no. 1­2, pp. 187–192, 2000.
[64] D. A. Gough, J. Y. Lucisano, and P. H. Tse, “Two­dimensional enzyme electrode sensor for glucose,” Analytical Chemistry, vol. 57, no. 12, pp. 2351–2357, 1985.
[65] J. C. Armour, J. Y. Lucisano, B. D. McKean, and D. A. Gough, “Application of chronic intravascular blood glucose sensor in dogs,” Diabetes, vol. 39, no. 12, pp. 1519–1526, 1990.
[66] A. P. Turner, B. Chen, and S. A. Piletsky, “In vitro diagnostics in diabetes: meeting the challenge,” 1999.
[67] A. E. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. J. Higgins, E. V. Plotkin, L. D. Scott, and A. P. Turner, “Ferrocenemediated enzyme electrode for amperometric determination of glucose,” Analytical chemistry, vol. 56, no. 4, pp. 667–671, 1984.
[68] J. E. Frew and H. A. O. Hill, “Electrochemical biosensors,” Analytical chemistry, vol. 59, no. 15, pp. 933A–944A, 1987.
[69] M. Shichiri, Y. Yamasaki, R. Kawamori, N. Hakui, and H. Abe, “Wearable artificial endocrine pancreas with needle­type glucose sensor,” The Lancet, vol. 320, no. 8308, pp. 1129–1131, 1982.
[70] A. Chaubey and B. Malhotra, “Mediated biosensors,” Biosensors and bioelectronics, vol. 17, no. 6­7, pp. 441–456, 2002.
[71] Y. Degani and A. Heller, “Direct electrical communication between chemically modified enzymes and metal electrodes. i. electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme,” Journal of Physical Chemistry, vol. 91, no. 6, pp. 1285–1289, 1987.
[72] T. J. Ohara, R. Rajagopalan, and A. Heller, ”wired” enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances,” Analytical Chemistry, vol. 66, no. 15, pp. 2451–2457, 1994.
[73] “Two laboratory evaluations of the ames glucometer.,” Clinical chemistry, vol. 28 12, pp. 2448–50, 1982.
[74] S. Clarke and J. Foster, “A history of blood glucose meters and their role in self­monitoring of diabetes mellitus,” British journal of biomedical science, vol. 69, no. 2, pp. 83–93, 2012.
[75] D. Matthews, R. Holman, E. Bown, J. Steemson, and A. Watson, “Pen­sized digital 30­second blood glucose meter,” Lancet (British edition), vol. 1, no. 8536, pp. 778–779, 1987.
[76] M. Burritt, “Current analytical approaches to measuring blood analytes,” Clinical chemistry, vol. 36, no. 8, pp. 1562–1566, 1990.
[77] D. Ross, L. Heinemann, and E. Chantelau, “Short­term evaluation of an electro­chemical system (exactech™) for blood glucose monitoring,” Diabetes research and clinical practice, vol. 10, no. 3, pp. 281– 285, 1990.
[78] G. F. Khan, M. Ohwa, and W. Wernet, “Design of a stable charge transfer complex electrode for a third­generation amperometric glucose sensor,” Analytical chemistry, vol. 68, no. 17, pp. 2939–2945, 1996.
[79] F. Palmisano, P. G. Zambonin, D. Centonze, and M. Quinto, “A disposable, reagentless, third­generation glucose biosensor based on overoxidized poly (pyrrole)/tetrathiafulvalene­ tetracyanoquin­ odimethane composite,” Analytical chemistry, vol. 74, no. 23, pp. 5913–5918, 2002.
[80] Y. Wu and S. Hu, “Biosensors based on direct electron transfer in re­ dox proteins,” Microchimica Acta, vol. 159, no. 1­2, pp. 1–17, 2007.
[81] Y. Wang, R. Yuan, Y. Chaia, W. Li, Y. Zhuo, Y. Yuan, and J. Li, “Direct electron transfer: Electrochemical glucose biosensor based on hollow pt nanosphere functionalized multiwall carbon nanotubes,” Journal of Molecular Catalysis B: Enzymatic, vol. 71, no. 3­4, pp. 146–151, 2011.
[82] Y. Liu, M. Wang, F. Zhao, Z. Xu, and S. Dong, “The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix,” Biosensors and Bioelectronics, vol. 21, no. 6, pp. 984–988, 2005.
[83] N. Čenas and J. Kulys, “Biocatalytic oxidation of glucose on the conductive charge transfer complexes,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 128, pp. 103–113, 1981.
[84] J. Wu and Y. Qu, “Mediator­free amperometric determination of glucose based on direct electron transfer between glucose oxidase and an oxidized boron­doped diamond electrode,” Analytical and bioanalytical chemistry, vol. 385, no. 7, pp. 1330–1335, 2006.
[85] Q. Zhang, Y. Lu, S. Li, J. Wu, and Q. Liu, “20 ­ peptide­based biosensors,” in Peptide Applications in Biomedicine, Biotechnology and Bioengineering (S. Koutsopoulos, ed.), pp. 565 – 601, Wood­ head Publishing, 2018.
[86] X. Zhu and T. Gao, “Chapter 10 ­ spectrometry,” in Nano­Inspired Biosensors for Protein Assay with Clinical Applications (G. Li, ed.), pp. 237 – 264, Elsevier, 2019.
[87] H. B. Moylan, C. K. Carrico, S. J. Lindauer, and E. Tüfekçi, “Accuracy of a smartphone­based orthodontic treatment–monitoring ap­ plication: A pilot study,” The Angle Orthodontist, vol. 89, no. 5, pp. 727–733, 2019.
[88] H. J. Kim, S. M. Kim, H. Shin, J.­S. Jang, Y. I. Kim, and D. H. Han, “A mobile game for patients with breast cancer for chemotherapy self­management and quality­of­life improvement: randomized controlled trial,” Journal of medical Internet research, vol. 20, no. 10, p. e273, 2018.
[89] A. M. Albisser, B. Leibel, T. Ewart, Z. Davidovac, C. Botz,
W. Zingg, H. Schipper, and R. Gander, “Clinical control of diabetes by the artificial pancreas,” Diabetes, vol. 23, no. 5, pp. 397–404, 1974.
[90] D. S. Bindra, Y. Zhang, G. S. Wilson, R. Sternberg, D. R. Thevenot,
D. Moatti, and G. Reach, “Design and in vitro studies of a needle type glucose sensor for subcutaneous monitoring,” Analytical chem­ istry, vol. 63, no. 17, pp. 1692–1696, 1991.
[91] E. Csoeregi, D. W. Schmidtke, and A. Heller, “Design and optimization of a selective subcutaneously implantable glucose electrode based on” wired” glucose oxidase,” Analytical Chemistry, vol. 67, no. 7, pp. 1240–1244, 1995.
[92] C. Henry, “Getting under the skin: implantable glucose sensors,”
Analytical chemistry, vol. 70, no. 17, pp. 594A–598A, 1998.
[93] D. W. Schmidtke, A. C. Freeland, A. Heller, and R. T. Bonnecaze, “Measurement and modeling of the transient difference between blood and subcutaneous glucose concentrations in the rat after injection of insulin,” Proceedings of the National Academy of Sciences, vol. 95, no. 1, pp. 294–299, 1998.
[94] K. Rebrin and G. M. Steil, “Can interstitial glucose assessment replace blood glucose measurements?,” Diabetes technology & therapeutics, vol. 2, no. 3, pp. 461–472, 2000.
[95] W. Tamborlane, R. Beck, B. Bode, B. Buckingham, H. Chase,
R.Clemons, R. Fiallo­Scharer, L. Fox, and L. Gilliam, “Juvenile diabetes research foundation continuous glucose monitoring study group continuous glucose monitoring and intensive treatment of type 1 diabetes,” N Engl J Med, vol. 359, no. 14, pp. 1464–1476, 2008.
[96] B. Bode, R. Beck, and D. Xing, “iwsp., juvenile diabetes research foundation continuous glucose monitoring study group. sustained benefit of continuous glucose monitoring on a1c, glucose profiles, and hypoglycemia in adults with type 1 diabetes,” Diabetes Care, vol. 32, pp. 2047–2049, 2009.
[97] J. D. R. F. C. G. M. S. Group et al., “The effect of continuous glucose monitoring in well­controlled type 1 diabetes,” Diabetes care, vol. 32, no. 8, pp. 1378–1383, 2009.
[98] M. Montagnana, G. Lippi, and G. C. Guidi, “Continuous glucose monitoring and type 1 diabetes.,” The New England Journal of Medicine, vol. 360, no. 2, pp. 190–author, 2009.
[99] E. D’costa, I. Higgins, and A. Turner, “Quinoprotein glucose dehydrogenase and its application in an amperometric glucose sensor,” Biosensors, vol. 2, no. 2, pp. 71–87, 1986.
[100] P. Twomey, “Plasma glucose measurement with the yellow springs glucose 2300 stat and the olympus au640,” Journal of clinical pathology, vol. 57, no. 7, pp. 752–754, 2004.
[101] M. L. Turgeon, Linne & Ringsrud’s Clinical Laboratory Science­ E­Book: The Basics and Routine Techniques. Elsevier Health Sciences, 2015.
[102] L. Dohnal, M. Kalousova, and T. Zima, “Comparison of three meth­ ods for determination of glucose,” Prague Med Rep, vol. 111, no. 1, pp. 42–54, 2010.
[103] M. Duxbury, “An enzymatic clinical chemistry laboratory experiment incorporating an introduction to mathematical method comparison techniques,” Biochemistry and Molecular Biology Education, vol. 32, no. 4, pp. 246–249, 2004.
[104] C. Higgins, “Measurement of circulating glucose: The problem of inconsistent sample and methodology,” Measurement, 2008.
[105] S. Narla, M. Jones, K. Hermayer, and Y. Zhu, “Critical care glucose point­of­care testing,” in Advances in clinical chemistry, vol. 76, pp. 97–121, Elsevier, 2016.
[106] S. Narla, M. Jones, K. Hermayer, and Y. Zhu, “Chapter four ­ critical care glucose point­of­care testing,” Advances in Clinical Chemistry, vol. 76, pp. 97 – 121, 2016.
[107] A. Farley, C. Hendry, and E. McLafferty, “Blood components,” Nurs Stand, vol. 27, pp. 35–42, 11 2012.
[108] H. Popp, “Blood Banking and Transfusion Medicine: Basic Principles & Practice,” Pathology, vol. 35, no. 5, p. 457, 2003.
[109] L. M. Mikesh and D. E. Bruns, “Stabilization of glucose in blood specimens: mechanism of delay in fluoride inhibition of glycolysis,” Clinical Chemistry, vol. 54, no. 5, pp. 930–932, 2008.
[110] J. M. Bland and D. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” The lancet, vol. 327, no. 8476, pp. 307–310, 1986.
[111] A. R. Majithia, A. B. Wiltschko, H. Zheng, G. A. Walford, and D. M. Nathan, “Rate of change of premeal glucose measured by continuous glucose monitoring predicts postmeal glycemic excursions in patients with type 1 diabetes: Implications for therapy,” Journal of diabetes science and technology, vol. 12, no. 1, pp. 76–82, 2018.
[112] M. Lind, W. Polonsky, I. B. Hirsch, T. Heise, J. Bolinder,
S. Dahlqvist, E. Schwarz, A. F. Ólafsdóttir, A. Frid, H. Wedel, et al., “Continuous glucose monitoring vs conventional therapy for glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections: the gold randomized clinical trial,” Jama, vol. 317, no. 4, pp. 379–387, 2017.
[113] R. W. Beck, T. Riddlesworth, K. Ruedy, A. Ahmann, R. Bergenstal, S. Haller, C. Kollman, D. Kruger, J. B. McGill, W. Polonsky, et al., “Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: the diamond randomized clinical trial,” Jama, vol. 317, no. 4, pp. 371–378, 2017.

無法下載圖示 全文公開日期 2026/02/02 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE