簡易檢索 / 詳目顯示

研究生: 黃勇綸
Yong-Lun Huang
論文名稱: 緩和彎角結合混合式補償降低非平衡差動對共模雜訊
Smooth Bends Using Hybrid Compensation for Common-mode Noise Reduction
指導教授: 林丁丙
Ding-Bing Lin
口試委員: 丘建青
Chien‐Ching Chiu
黃建彰
Chien-Chang Huang
曾昭雄
Chao-Hsiung Tseng
林丁丙
Ding-Bing Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 59
中文關鍵詞: 訊號完整性緩和彎角混合式補償共模雜訊
外文關鍵詞: differential signal integrity, smooth bends, hybrid compensation, common-mode noise
相關次數: 點閱:204下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要目的為利用所提出的緩和彎角架構先行降低差動對彎角處本身的不平衡性,再經由於緩和處同時應用電容及電感補償達到混合式補償以強化共模雜訊抑制效果。
為了有更全面的結果分析,將設計目標訂為:以緩和彎角混合式補償改善混模參數中模轉換(Scd21)的同時;也能保有差模訊號的完整性,即差模損耗(Sdd21)不至於因為加入補償電路受到太大的影響。
時域的分析除了統整補償前後的共模雜訊與其眼高及眼寬,也同時比較補償後150度緩和彎角與未補償90度直角架構之共模雜訊改善百分比例,可達59.3 %,並歸納出符合設計目標且抑制效果最佳的混合式補償。
模擬與量測部分的驗證頻率範圍從DC至6GHz,在此範圍內,最佳抑制效果的模轉換皆優於-17.262 dB,差模損耗皆低於2.798 dB,量測結果與模擬結果有很高的一致性。此外,也利用模擬的方式來驗證集總元件等效電路的正確性。


Proposed smooth bends structure is used to reduce the area of unbalance differential bend in order to enhance suppression of mode conversion and common-mode noise. At the same time, the proposed structure keeps differential-mode transmission level to maintain the integrity of differential signal. Moreover, the proposed hybrid compensation method is also used on smooth bends structure, and concludes that smooth bends structure with the “LCL” compensation way has the best performance of all. For the mode-conversion, it can be suppressed under -17.262 dB, and the insertion loss remains all below 2.798 dB from DC to 6 GHz. The significant advantage of proposed structure is that it can be fabricated on PCB easily to lower the cost. In time domain analysis, the common-mode noise can be reduced by 59.3 % compared with right-angle bend structure. Measurements on proposed structures have good agreement with simulations. All things considered, the proposed smooth bends structure successfully reduce the effect of unbalance for better mode-conversion suppression and the best hybrid compensation way is concluded.

摘要 i Abstract ii 誌謝 iv 目錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1研究背景與動機 1 1.2文獻探討 5 1.3論文架構 10 第二章 差動傳輸線基礎理論 11 2.1差動訊號傳輸簡介 11 2.2耦合傳輸線概述 12 2.3奇模與偶模分析 14 2.4混合模態散射參數 19 第三章 緩和彎角結合混合式補償降低非平衡差動對共模雜訊 24 3.1概述 24 3.2微帶差動傳輸線架構簡介及參數分析 25 3.3差動傳輸線非對稱彎角處集總元件等效電路建立 26 3.4集總元件等效電路模型建立與補償電容公式推導流程 27 3.5電感性短路耦合線設計流程 33 3.6利用緩和彎角架構降低差動傳輸線彎角不平衡性 35 3.7集總元件等效電路模擬驗證 36 3.8驗證緩和彎角成功降低彎角不平衡性 42 3.9提出設計目標與混合式補償應用於緩和彎角架構 44 3.10頻域模擬結果分析 47 3.11時域模擬結果分析 49 第四章 模擬與量測結果 51 4.1實作架構 51 4.2頻域量測結果分析 52 4.3時域量測結果分析 54 第五章 結論 56 參考文獻 57

[1] Sharawi, M. S., "Practical issues in high speed PCB design," IEEE Potentials, vol. 23, No. 2, 24-27, Apr./May 2004.
[2] W. T. Huang, C. H. Lu, and D. B. Lin, "The optimal number and location of grounded vias to reduce crosstalk," Progress In Electromagnetics Research, vol. 95, 241-266, 2009.
[3] K. Lee, "A serpentine guard trace to reduce the far-end crosstalk voltage and the crosstalk induced timing jitter of parallel microstrip lines", IEEE Trans. Adv. Packag., vol. 31, no. 4, pp. 809-817, Nov. 2008.
[4] D. G. Kam, H. Lee, J. Kim, J. Kim, "A new twisted differential line structure on high-speed printed circuit boards to enhance immunity to crosstalk and external noise", IEEE Microw. Wireless Compon. Lett., vol. 13, no. 9, pp. 411-413, Sep. 2003.
[5] Z. Chen, G. Katopis, "A comparison of performance potentials of single ended vs. differential signaling", Proc. of IEEE EPEP, pp. 185-188, Oct. 2004.
[6] D. B. Lin, “Signal integrity of bent differential transmission lines,” IEEE Electronics Letters, vol. 40, no. 19, pp. 1191 – 1192, Sep. 2004.
[7] D. B. Lin, C. P. Huang, Y. C. Chen, H. N. Ke, W. S. Liu, “Signal integrity improvements of bended coupled lines by using miniaturized capacitance and inductance compensation structures” Proc. Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), pp. 22-24, 2016.
[8] D. B. Lin, C. P. Huang, C. H. Lin, H. N. Ke, W. S. Liu “Common-mode noise reduction of bended coupled lines by using time compensation technology” Proc. IEEE International Symposium on Electromagnetic Compatibility (EMC), pp. 797-800, 2016.
[9] D. B. Lin, C. P. Huang, H. N. Ke, "Using stepped-impedance lines for common-mode noise reduction on bended coupled transmission lines", IEEE Trans. Comp. Packag. Manuf. Tech., vol. 6, no. 5, pp. 757-766, May 2016.
[10] G. Shiue, W. Guo, C. Lin, R. Wu, "Noise reduction using compensation capacitance for bend discontinuities of differential transmission lines", IEEE Trans. Adv. Packag., vol. 29, no. 3, pp. 560-569, Aug. 2006.
[11] C. H. Chang, R. Y. Fang, C. L. Wang, "Bended differential transmission line using compensation inductance for common-mode noise suppression", IEEE Trans. Compon. Packag. Manuf. Technol., vol. 2, no. 9, pp. 1518-1525, Sep. 2012.
[12] C. H. Chang, R. Y. Fang, and C. L. Wang, “Bended differential transmission line using balanced model for common-mode noise suppression,” IEEE Electrical Design of Advanced Packaging and Systems Symposium ( EDAPS ), 2012.
[13] B.-R. Huang, C.-H. Chang, R.-Y. Fang, C.-L. Wang, "Common-mode noise reduction using asymmetric coupled line with SMD capacitor", IEEE Trans. Compon. Packag. Manuf. Technol., vol. 4, no. 6, pp. 1082-1089, Jun. 2014.
[14] C. Gazda, D. Vande Ginste, H. Rogier, D. De Zutter, R.-B. Wu, "Time domain analysis of a wideband common-mode suppression filter for bent interconnects", Proc. IEEE 15th Workshop Signal Pro. Int., pp. 7-10, May 2011.
[15] C. Gazda, H. Rogier , D. V. Ginste , I. Couckuyt, T. Dhaene,” Time domain analysis of a common-mode suppression filter subjected to a multi-objective optimization” Proc. EMC Europe, pp. 17-21, Sep, 2012.
[16] C. Gazda, D. Vande Ginste, H. Rogier, R.-B. Wu, D. De Zutter, "A wideband common-mode suppression filter for bend discontinuities in differential signaling using tightly coupled microstrips", IEEE Trans. Adv. Pack., vol. 33, no. 4, pp. 969-978, Nov. 2010.
[17] W. Fan, A. Lu, L. L. Wai, Β. K. Lok, "Mixed-mode S-parameter characterization of differential structures", Proc. IEEE 5th Electron. Packag. Technol. Conf., pp. 533-537, 2003-Dec.
[18] Yinchao Chen, Shuhui Yang, "Mixed mode S-parameters analysis for differential networks in integrated circuits", Proceedings of 16th IPFA, pp. 1-7, June 2009.
[19] H.-G. Lin, T.-W. Huang, R.-B. Wu, C.-M. Lin, "Model extractions of coupled bonding-wire structures in electronic packaging", Proc. APMC, vol. 1, pp. 1-4, Dec. 2005.
[20] Bockelman, D. E., Eisenstadt, W. R., "Combined differential and common-mode scattering parameters: theory and simulation", IEEE Trans. Microw. Theory Tech., 1995, 43, (7), pp. 1530–1539.
[21] T. Matsushima, O. Wada, "A method of common-mode reduction based on imbalance difference model for differential transmission line bend", Proc. EMC Europe, pp. 338-341, Sept. 2013.
[22] Xinglong Wu, Flavia Grassi, Paolo Manfredi, Dries Vande Ginste, Sergio A. Pignari, “Compensating mode conversion due to bend discontinuities through intentional trace asymmetry,” IEEE Transactions on Electromagnetic Compatibility., April. 2019.
[23] D. M. Pozar, Microwave Engineering, 4th ed. Wiley, 2012.
[24] G. L. Matthaei, L. Young, E. M. T. Jones, Microwave Filters, Impedance-matching networks, and Coupling Structures, Artech House, 1980.
[25] S. H. Hall, G. W. Hall, and J. A. McCall, High-Speed Digital System Design, A Handbook of Interconnect Theory and Design Practices, NJ: Wiley, 2000.

QR CODE