簡易檢索 / 詳目顯示

研究生: 許云昇
Yun-Sheng Hsu
論文名稱: 高透光太陽能節能玻璃建築之節能與舒適環境研究
Research on Energy Efficiency and Indoor Comfort for High See-through Heat Insulation Solar Glass Buildings
指導教授: 楊錦懷
Chin-Huai Young
口試委員: 江維華
Wei-Hua Chiang
陳尚鋒
Shang-Feng Chen
楊錦懷
Chin-Huai Young
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 288
中文關鍵詞: 太陽能節能玻璃高透光發電節能近零耗能建築能源模擬
外文關鍵詞: Heat Insulation Solar Glass, High See-through, Power Generation, Energy Saving, Nearly Zero-Energy, Energy Simulation
相關次數: 點閱:273下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將探討高透光太陽能節能玻璃和不同種類玻璃建材運用於實體試驗屋對室內舒適度之影響,並以冷暖空調及通風系統進行節能分析。於國立臺灣科技大學建置三間玻璃試驗屋,並裝設不同種類之玻璃,分別為高透光太陽能節能玻璃屋、Low-E節能玻璃屋和一般玻璃屋,用於比較不同玻璃之發電差異、光環境差異、熱環境差異、能耗及節能差異、環境及人體舒適度,並研究冷氣空調與通風系統相互搭配,降低耗電,節能減碳。
    本研究主要分為五個部分,分別為發電分析、光環境分析、熱環境分析、節能分析和舒適度分析,並針對高透光太陽能節能玻璃進行建築物應用設計模擬分析與環境效益減碳分析。研究結果顯示,由於高透光太陽能節能玻璃能提供建築額外的電力,因此能大幅降低建築外部的電力需求,且高透光太陽能節能玻璃屋能於不開任何空調及通風系統之密閉及自然對流環境中,長時間維持於較佳的環境舒適度以及人體舒適度,充分展現高透光太陽能節能玻璃良好的發電及隔熱性能。建築若運用高透光太陽能節能玻璃,除了能提供優異的發電性能之外,還能擁有明亮的光線,減少照明能耗,同時帶來極佳的空調節能效果,達到節能減碳及環境永續的目的。建築應用設計以臺北為例,運用高透光太陽能節能玻璃的多功能展覽館之全年耗電量減去全年發電量只需要消耗27,743kWh,相較於一般玻璃屋所需之耗電量為141,767kWh,可以節省80%耗電量。對於建築應用設計之多功能展覽館設置於不同地點之模擬分析,以杜拜為例,若運用高透光太陽能節能玻璃之全年碳排量相對於一般玻璃,可節省約116.2公噸的碳排放,相當於臺北大安森林公園3.6個月的CO2吸收量。


    In the dissertation, the impact of high see-through heat insulation solar glass and different types of glass building materials on indoor comfort are discussed, which were analyzed by air conditioning and ventilation system. The types of glass used for the three test houses built on the top floor of National Taiwan University of Science and Technology are Heat Insulation Solar Glass, Low-Emissivity Glass, and Ordinary Glass. They are used to compare different types of glass, regarding their power generation, power consumption, and the level of comfort the environment provides to humans, and to study how air conditioning and ventilation systems, when combined, reduce the overall power consumption and carbon emission.
    The research is mainly divided into five sections: power generation analysis, light environment analysis, thermal environment analysis, energy saving analysis and comfort analysis, stimulating the power generation, energy consumption and indoor and outdoor light environment by simulation software, and compares the simulation results with the measured results. The results show that, in addition to providing excellent power generation performance, buildings with high see-through heat insulation solar glass can have bright lights, therefore reducing power consumption from lighting products, and can at the same time optimize air conditioning energy efficiency and reach the goal of saving energy and environment sustainability.

    摘要 III Abstract IV 誌謝 V 目錄 VI 表目錄 XI 圖目錄 XVI 第一章、緒論 1 1.1研究動機 1 1.2研究目的 2 1.3研究方法 3 1.4研究流程 4 第二章、文獻回顧 5 2.1臺灣太陽能發展概況 5 2.1.1世界及臺灣再生能源政策 5 2.1.2臺灣地理環境與氣候類型 6 2.1.3臺灣太陽日射角度 7 2.2建築玻璃材料 8 2.2.1玻璃對建築物的重要性 8 2.2.2理想的建築玻璃 9 2.2.3複層玻璃 12 2.2.4低表面輻射率Low-E玻璃 14 2.2.5雙中空懸膜玻璃 16 2.3太陽能技術及性能 17 2.3.1結晶矽太陽能電池 17 2.3.2透光薄膜型太陽能玻璃 18 2.3.3太陽能節能玻璃 24 2.4建物一體太陽光電 26 2.4.1 BIPV介紹 26 2.4.2 BIPV歷史緣由與挑戰 27 2.4.3 BIPV模組與建築物之結合 28 2.5近零耗能建築節能 30 2.5.1近零耗能建築 30 2.5.2建築物室內熱負荷 31 2.5.3建築物熱傳導 33 2.6環境及人體舒適度 34 2.6.1舒適度概論 34 2.6.2環境舒適度 35 2.6.3人體舒適度 37 2.6.4 PMV與PPD之計算 40 第三章、試驗設計與實施 44 3.1試驗設計概要 44 3.1.1發電試驗 46 3.1.2光環境試驗 47 3.1.3熱環境試驗 48 3.1.4節能試驗 50 3.1.5舒適度計算 51 3.1.6發電耗能模擬 52 3.2試驗詳細參數 53 3.3發電試驗 57 3.4光環境試驗 61 3.5熱環境試驗 66 3.5.1環境監測系統 66 3.5.2熱環境量測 69 3.6節能試驗 75 3.6.1冷氣空調設備 77 3.6.2暖氣空調設備 79 3.6.3通風設備 80 3.6.4電子式電表 81 3.6.5溫度控制系統 82 3.6.6耗能模擬計算 85 3.7舒適度計算 87 3.7.1環境舒適度指數 88 3.7.2人體模型熱顯像拍攝 89 3.7.3人體舒適度指數 90 3.8建築應用設計模擬 96 3.9環境減碳效益計算 98 第四章、試驗結果與分析 99 4.1發電分析 99 4.1.1逐月及累積太陽能發電量整理分析 100 4.1.2斜頂面與南立面發電比例分析 102 4.1.3全年發電模擬結果與分析 105 4.2光環境分析 108 4.2.1試驗屋全年遮陰模擬分析 108 4.2.2紫外光量測分析 111 4.2.3照明強度量測分析 114 4.2.4光照比例量測分析 122 4.3熱環境分析 126 4.3.1溫度量測空白值分析 126 4.3.2密閉試驗結果與分析 127 4.3.3自然對流試驗結果與分析 129 4.3.4輻射熱隔絕量測分析 131 4.3.5玻璃表面熱顯像拍攝分析 134 4.3.6玻璃表面熱電偶溫度線量測分析 137 4.4節能分析 141 4.4.1冷氣空調節能分析 142 4.4.2冷氣空調+通風節能分析 144 4.4.3不同溫控模式耗電比較分析 146 4.4.4暖氣空調節能分析 152 4.4.5三間玻璃試驗屋逐月及累積耗能分析 154 4.4.6全年耗能模擬結果與分析 165 4.4.7三間玻璃試驗屋節能效益分析 169 4.5舒適度分析 172 4.5.1環境舒適度分析 172 4.5.2人體模型熱顯像拍攝分析 176 4.5.3人體舒適度分析 178 4.6建築應用設計模擬分析 183 4.6.1建築應用設計全年發電模擬分析 185 4.6.2建築應用設計全年耗能模擬分析 191 4.6.3建築應用設計節能效益分析 196 4.7環境減碳效益分析 201 第五章、結論與建議 206 5.1結論 206 5.1.1發電 206 5.1.2光環境 206 5.1.3熱環境 207 5.1.4節能 208 5.1.5舒適度 208 5.1.6建築應用設計 210 5.1.7環境減碳效益 210 5.2建議 211 第六章、參考文獻 212 附錄 221 附錄一 高透光太陽能節能玻璃試驗屋詳細發電數據 222 附錄二 三間玻璃試驗屋詳細耗電數據 250

    Abawi, Y., Rennhofer, M., Berger, K., Wascher, H., & Aichinger, M. (2016). Comparison of theoretical and real energy yield of direct DC-power usage of a Photovoltaic Façade system. Renewable Energy, 89, 616-626.
    Adiboina, G. (2010). Thin-Film Photovoltaic (PV) Cells Market Analysis to 2020. The Alternative Energy eMagazine (published online).
    Alghamedi, R., Vasiliev, M., Nur-E-Alam, M., & Alameh, K. (2014). Spectrally-selective all-inorganic scattering luminophores for solar energy-harvesting clear glass windows. Scientific reports, 4, 6632.
    Andresen, I. (2002). Building Integrated Photovoltaics in Smart Energy-Efficient Buildings A State-of-the-Art. SINTEF, Civil and Environmental Engineering, A report within the research program Smart Energy-Efficient Buildings at NTNU and SINTEF, 2006, 25.
    Arbab, M., & Finley, J. J. (2010). Glass in architecture. International Journal of Applied Glass Science, 1(1), 118-129.
    Arıcı, M., Karabay, H., & Kan, M. (2015). Flow and heat transfer in double, triple and quadruple pane windows. Energy and Buildings, 86, 394-402.
    Aste, N., Adhikari, R., & Buzzetti, M. (2010). Beyond the EPBD: the low energy residential settlement Borgo Solare. Applied Energy, 87(2), 629-642.
    Buecheler, S., Chirila, A., Perrenoud, J., Kranz, L., Gretener, C., Blösch, P., . . . Tiwari, A. (2011). Flexible and lightweight solar modules for new concepts in building integrated photovoltaics. Proceedings of the CISBAT, Lausanne, Switzerland, 14-16.
    Chabane, I. J., & Bensalem, R. Tinted Glass Curtain Wall and its Implications on the Occupants’ Health–Case Study of a Tight Office Building in Algiers.
    Chan, L. Local Thermal Discomfort. City University of Hong Kong, Available at: http://personal.cityu.edu.hk/~bsapplec.
    Chen, A. (2004). Cool Colors Project: Improved Materials for Cooler Roofs, 2015.
    CHEN, C. L. (2016). Energy Efficiency Research of CIGS Heat Insulation Solar Glass Buildings. (Master of Science), National Taiwan University of Science and Technology, Taiwan.
    Chen, S., Gong, X., Walsh, A., & Wei, S.-H. (2009). Crystal and electronic band structure of Cu 2 ZnSn X 4 (X= S and Se) photovoltaic absorbers: First-principles insights. Applied Physics Letters, 94(4), 041903.
    Chow, T., He, W., & Ji, J. (2007). An experimental study of facade-integrated photovoltaic/water-heating system. Applied Thermal Engineering, 27(1), 37-45.
    Commission, C. f. t., Commission, C. f. t., Commission, C. f. t., & Commission, C. f. t. (2006). Action Plan for Energy Efficiency: Realising the Potential. COM (2006), 545.
    Cuce, E. (2016). Toward multi-functional PV glazing technologies in low/zero carbon buildings: Heat insulation solar glass–Latest developments and future prospects. Renewable and Sustainable Energy Reviews, 60, 1286-1301.
    Cuce, E., Cuce, P. M., & Young, C.-H. (2016). Energy saving potential of heat insulation solar glass: key results from laboratory and in-situ testing. Energy, 97, 369-380.
    Cuce, E., & Riffat, S. B. (2015). A state-of-the-art review on innovative glazing technologies. Renewable and Sustainable Energy Reviews, 41, 695-714.
    Cuce, E., Riffat, S. B., & Young, C.-H. (2015). Thermal insulation, power generation, lighting and energy saving performance of heat insulation solar glass as a curtain wall application in Taiwan: a comparative experimental study. Energy Conversion and Management, 96, 31-38.
    Cuce, E., Young, C.-H., & Riffat, S. B. (2014). Performance investigation of heat insulation solar glass for low-carbon buildings. Energy Conversion and Management, 88, 834-841.
    Cuce, E., Young, C.-H., & Riffat, S. B. (2015). Thermal performance investigation of heat insulation solar glass: a comparative experimental study. Energy and Buildings, 86, 595-600.
    Dahlstrøm, O., Sørnes, K., Eriksen, S. T., & Hertwich, E. G. (2012). Life cycle assessment of a single-family residence built to either conventional-or passive house standard. Energy and Buildings, 54, 470-479.
    Dascalaki, E. G., Droutsa, K., Gaglia, A. G., Kontoyiannidis, S., & Balaras, C. A. (2010). Data collection and analysis of the building stock and its energy performance—An example for Hellenic buildings. Energy and Buildings, 42(8), 1231-1237.
    De Dear, R. J., & Brager, G. S. (2002). Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55. Energy and Buildings, 34(6), 549-561.
    DeForest, N., Shehabi, A., O'Donnell, J., Garcia, G., Greenblatt, J., Lee, E. S., . . . Milliron, D. J. (2015). United States energy and CO 2 savings potential from deployment of near-infrared electrochromic window glazings. Building and Environment, 89, 107-117.
    Ebong, A., Cooper, I. B., Rounsaville, B., Tate, K., Rohatgi, A., Bunkenburg, B., . . . Ruf, D. (2010). High efficiency inline diffused emitter (ILDE) solar cells on mono‐crystalline CZ silicon. Progress in Photovoltaics: Research and applications, 18(8), 590-595.
    Economics, W. (2008). Oil price history and analysis. http://www.wtrg.com/prices.htm.
    Edlich, R., Winters, K. L., Cox, M. J., Becker, D. G., Horowitz, J. H., Nichter, L. S., . . . Edlic, E. C. (2004). Use of UV-protective windows and window films to aid in the prevention of skin cancer. Journal of long-term effects of medical implants, 14(5).
    Eiffert, P. (2000). An Economic Assessment of Building Integrated Photovoltaics. Paper presented at the The 2nd World Solar Electric Buildings Conference, Sydney 8th-10th March.
    Energy, E. (2016). Buildings. Retrieved from https://ec.europa.eu/energy/en/topics/energy-efficiency/buildings
    Enkvist, P.-A., Dinkel, J., & Lin, C. (2010). Impact of the financial crisis on carbon economics: Version 2.1 of the global greenhouse gas abatement cost curve. McKinsey & Company, 374.
    EU. (2010). Directive 2010/31/EU of 19 May 2010 on the energy performance of buildings. Brussels.
    EU. (2012). Directive 2012/27/EU of 26 October 2012 on the energy. Brussels.
    EUROPEA, U. (2014). Horizon 2020 Work Programme 2014–2015 16. Science with and for Society. Recuperado desde http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/main/h2020-wp1415-swfs_en.pdf.
    Fanger, P. O. (1970). Thermal comfort. Analysis and applications in environmental engineering. Thermal comfort. Analysis and applications in environmental engineering.
    Fanger, P. O. (1972). Thermal comfort analysis and applications in environment engineering: McGraw Hill New York.
    Fanney, A. H., Dougherty, B. P., & Davis, M. W. (2001). Measured performance of building integrated photovoltaic panels. TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF SOLAR ENERGY ENGINEERING, 123(3), 187-193.
    G&E. (2017). Germany developed a new high-performance polysilicon solar cells. Retrieved from http://en.channelge.com/
    Gago, E., Muneer, T., Knez, M., & Köster, H. (2015). Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load. Renewable and Sustainable Energy Reviews, 41, 1-13.
    Guardo, A., Coussirat, M., Egusquiza, E., Alavedra, P., & Castilla, R. (2009). A CFD approach to evaluate the influence of construction and operation parameters on the performance of Active Transparent Facades in Mediterranean climates. Energy and Buildings, 41(5), 534-542.
    Gustavsen, A. (2008). State-of-the-art highly insulating window frames-Research and market review. Lawrence Berkeley National Laboratory.
    Handbook, A. F. (2005). Atlanta: American Society of heating, refrigerating and air-conditioning engineers: Inc.
    Henemann, A. (2008). BIPV: Built-in solar energy. Renewable Energy Focus, 9(6), 14-19.
    Henze, N., Funtan, P., Misara, S., & Roos, M. Multifunktionale PV-Bauelemente in der Gebäudehülle-Das Projekt MULTIELEMENT.
    HU, L. Y. (2015). Design and Energy Efficiency Analysis of Smart Heat Insulation Solar Glass. (Master of Science), National Taiwan University of Science and Technology, Taiwan.
    IEA. (2013). Transition to Sustainable Buildings − Strategies and Opportunities to 2050. Paper presented at the International Energy Agency.
    ISO, E. (2005). 7730. Ergonomics of the thermal environment—analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, Standards Norway, Oslo, Norway.
    ISO, I. (1993). TR 11079 Evaluation of Cold Environments—Determination of Required Clothing Insulation (IREQ). International Organization for Standardization, Geneva, Switzerland.
    Jacobson, M. Z. (2009). Review of solutions to global warming, air pollution, and energy security. Energy & Environmental Science, 2(2), 148-173.
    James, T., Goodrich, A., Woodhouse, M., Margolis, R., & Ong, S. (2011). Building-Integrated Photovoltaics (BIPV) in the residential sector: an analysis of installed rooftop system prices. Contract, 303, 275-3000.
    Jelle, B. P., Breivik, C., & Røkenes, H. D. (2012). Building integrated photovoltaic products: A state-of-the-art review and future research opportunities. Solar Energy Materials and Solar Cells, 100, 69-96.
    Jelle, B. P., Gustavsen, A., Nilsen, T. N., & Jacobsen, T. (2007). Solar material protection factor (SMPF) and solar skin protection factor (SSPF) for window panes and other glass structures in buildings. Solar Energy Materials and Solar Cells, 91(4), 342-354.
    Jelle, B. P., Hynd, A., Gustavsen, A., Arasteh, D., Goudey, H., & Hart, R. (2012). Fenestration of today and tomorrow: A state-of-the-art review and future research opportunities. Solar Energy Materials and Solar Cells, 96, 1-28.
    K., M. (2010). Research priorities for renewable energy technology by 2020 and beyond.
    Kylili, A., & Fokaides, P. A. (2014). Investigation of building integrated photovoltaics potential in achieving the zero energy building target. Indoor and Built Environment, 23(1), 92-106.
    Lewis, N. S. (2007). Powering the planet. Mrs Bull, 32(10), 808-820.
    Li, G. (2013). Review of thermal energy storage technologies and experimental investigation of adsorption thermal energy storage for residential application.
    Li, G. (2015). Comprehensive investigations of life cycle climate performance of packaged air source heat pumps for residential application. Renewable and Sustainable Energy Reviews, 43, 702-710.
    Li, G., Hwang, Y., & Radermacher, R. (2012). Review of cold storage materials for air conditioning application. International journal of refrigeration, 35(8), 2053-2077.
    Li, G., Hwang, Y., & Radermacher, R. (2014). Experimental investigation on energy and exergy performance of adsorption cold storage for space cooling application. International journal of refrigeration, 44, 23-35.
    Li, G., Hwang, Y., Radermacher, R., & Chun, H.-H. (2013). Review of cold storage materials for subzero applications. Energy, 51, 1-17.
    Li, G., Liu, D., Xie, Y., & Xiao, Y. (2010). Study on effect factors for CO2 hydrate rapid formation in a water-spraying apparatus. Energy & Fuels, 24(8), 4590-4597.
    Liddament, M. W. (2000). A review of ventilation and the quality of ventilation air. Indoor air, 10(3), 193-199.
    Lin, C.-A., Tsai, M.-L., Wei, W.-R., Lai, K.-Y., & He, J.-H. (2015). Packaging glass with a hierarchically nanostructured surface: a universal method to achieve self-cleaning omnidirectional solar cells. ACS nano, 10(1), 549-555.
    LIU, S. W. (2015). Design and Simulation of Energy Efficiency for Zero Energy Buildings. (Master of Science), National Taiwan University of Science and Technology, Taiwan.
    LO, W. (2015). Experiment and Simulation of Energy Saving and Indoor Environment for Heat Insulation Solar Glass on Glass Buildings. (Master of Science), National Taiwan University of Science and Technology, Taiwan.
    Long, L., & Ye, H. (2014). How to be smart and energy efficient: A general discussion on thermochromic windows. Scientific reports, 4.
    Mach, T., Grobbauer, M., Streicher, W., & Müller, M. J. (2015). Mppf-The Multifunctional Plug & Play Approach in Facade Technology: Verlag der Technischen Univ. Graz.
    Magazine, R. E. (2010). Abener signs off first ISCC plant in the world. Renewable Energy Magazine, 13.
    Manz, H. (2008). On minimizing heat transport in architectural glazing. Renewable Energy, 33(1), 119-128.
    Maturi, L. (2013). Building skin as energy supply: Prototype development of a wooden prefabricated BiPV wall. University of Trento.
    McEvoy, A., Markvart, T., Castañer, L., Markvart, T., & Castaner, L. (2003). Practical handbook of photovoltaics: fundamentals and applications: Elsevier.
    Meir, I. A., Garb, Y., Jiao, D., & Cicelsky, A. (2009). Post-occupancy evaluation: an inevitable step toward sustainability. Advances in building energy research, 3(1), 189-219.
    Murphy, T. (2011). Don’t be a PV efficiency snob. Energy Bulletin, Post Carbon Institute, http://www.energybulletin.net/stories/2011-09-26/don%E2, 80.
    Olesen, B. W., & Brager, G. S. (2004). A better way to predict comfort. ASHRAE Journal, 46(8), 20.
    Parida, B., Iniyan, S., & Goic, R. (2011). A review of solar photovoltaic technologies. Renewable and Sustainable Energy Reviews, 15(3), 1625-1636.
    Park, H. K., & Kim, H. (2015). Acoustic insulation performance of improved airtight windows. Construction and Building Materials, 93, 542-550.
    Parretta, A., Sarno, A., Tortora, P., Yakubu, H., Maddalena, P., Zhao, J., & Wang, A. (1999). Angle-dependent reflectance measurements on photovoltaic materials and solar cells. Optics Communications, 172(1-6), 139-151.
    Peng, C., Huang, Y., & Wu, Z. (2011). Building-integrated photovoltaics (BIPV) in architectural design in China. Energy and Buildings, 43(12), 3592-3598.
    Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy and Buildings, 40(3), 394-398.
    Piccolo, A., & Simone, F. (2015). Performance requirements for electrochromic smart window. Journal of Building Engineering, 3, 94-103.
    Pietrzko, S., & Mao, Q. (2013). Vibration identification and sound insulation of triple glazing. Noise Control Engineering Journal, 61(3), 345-354.
    Plaza, S. (2011). Top 10 world’s most efficient solar PV modules (Poly-crystalline).
    Quesada, G., Rousse, D., Dutil, Y., Badache, M., & Hallé, S. (2012). A comprehensive review of solar facades. Transparent and translucent solar facades. Renewable and Sustainable Energy Reviews, 16(5), 2643-2651.
    Raugei, M., & Frankl, P. (2009). Life cycle impacts and costs of photovoltaic systems: current state of the art and future outlooks. Energy, 34(3), 392-399.
    Recast, E. (2010). Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). Official Journal of the European Union, 18(06), 2010.
    Rezaei, S. D., Shannigrahi, S., & Ramakrishna, S. (2017). A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment. Solar Energy Materials and Solar Cells, 159, 26-51.
    Roadmap, E. (2011). 2050, Impact assessment and scenario analysis/aut. Comisión Europea. Bruselas: Unión Europea.
    Schuetze, T., Hullmann, H., & Bendel, B. (2009). Multifunctional Photovoltaic Building design and efficient photovoltaic use of solar energy. Proceedings of the Rio, 9.
    Schuetze, T., Willkomm, W., & Roos, M. (2015). Development of a Holistic Evaluation System for BIPV Façades. Energies, 8(6), 6135-6152.
    Shukla, A. K., Sudhakar, K., & Baredar, P. (2016). A comprehensive review on design of building integrated photovoltaic system. Energy and Buildings, 128, 99-110.
    Shukla, A. K., Sudhakar, K., & Baredar, P. (2017). Recent advancement in BIPV product technologies: A review. Energy and Buildings.
    Shukla, K., Rangnekar, S., & Sudhakar, K. (2015). Comparative study of isotropic and anisotropic sky models to estimate solar radiation incident on tilted surface: A case study for Bhopal, India. Energy Reports, 1, 96-103.
    Solangi, K., Islam, M., Saidur, R., Rahim, N., & Fayaz, H. (2011). A review on global solar energy policy. Renewable and Sustainable Energy Reviews, 15(4), 2149-2163.
    Strong, S. (2010). Building integrated photovoltaics (BIPV). Whole building design guide, 9.
    Temby, O., Kapsis, K., Berton, H., Rosenbloom, D., Gibson, G., Athienitis, A., & Meadowcroft, J. (2014). Building-integrated photovoltaics: distributed energy development for urban sustainability. Environment: Science and Policy for Sustainable Development, 56(6), 4-17.
    Thalfeldt, M., Pikas, E., Kurnitski, J., & Voll, H. (2013). Facade design principles for nearly zero energy buildings in a cold climate. Energy and Buildings, 67, 309-321.
    Tofield, B., & Ingham, M. (2012). Refurbishing Europe: An EU strategy for energy efficiency and climate action led by building refurbishment. Build with CaRe, Norwich.
    Tripathy, M., Sadhu, P. K., & Panda, S. K. (2016). A critical review on building integrated photovoltaic products and their applications. Renewable and Sustainable Energy Reviews, 61, 451-465. doi:10.1016/j.rser.2016.04.008
    TSAI, S. H. (2016). Energy Efficiency Study of Heat Insulation Solar Glass and Low-E Glass Buildings. (Master of Science), National Taiwan University of Science and Technology, Taiwan.
    TSENG, C. H. (2016). Enhancement of Solar Power and Energy Saving for Heat Insulation Solar Glass. (Master of Science), National Taiwan University of Science and Technology, Taiwan.
    Tuchinda, C., Srivannaboon, S., & Lim, H. W. (2006). Photoprotection by window glass, automobile glass, and sunglasses. Journal of the American Academy of Dermatology, 54(5), 845-854.
    UNFCCC, V. (2015). Adoption of the Paris Agreement. Proposal by the President (Draft Decision), United Nations Office, Geneva (Switzerland), 32.
    Union, I. (2014). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: Bryssel.
    Wawer, P., Müller, J., Fischer, M., Engelhart, P., Mohr, A., & Petter, K. (2011). Latest trends in development and manufacturing of industrial, crystalline silicon solar-cells. Energy Procedia, 8, 2-8.
    Wei, C. G., Liu, Z. Q., & Deng, X. Y. (2011). Application of thermoelectric generation technology in Building-integrated Photovoltaics (BIPV). Paper presented at the Advanced Materials Research.
    Willeke, G., & Fath, P. (1994). Mechanical wafer engineering for semitransparent polycrystalline silicon solar cells. Applied Physics Letters, 64(10), 1274-1276.
    Windholz, B., Zauner, C., Rennhofer, M., & Schranzhofer, H. (2011). Solar thermal energy conversion and photovoltaics in a multifunctional façade. Proceedings of the CISBAT. Lausanne, Switzerland, 14-16.
    WU, C. A. (2016). Development and Application of Lightweight PU Heat Insulation See-through Solar Panel. (Master of Science), National Taiwan University of Science and Technology, Taiwan.
    Xinshi, G., & Hong, Y. (2006). The simplified performance analysis of the PV/T system under ideal conditions. Acta Energiae Solaris Sinica, 27(1), 30.
    YANG, C. Y. (2015). Structural and Energy Efficiency Analysis on Retrofit of Traditional Iron-Sheet Roof by Solar Modules. (Master of Science), National Taiwan University of Science and Technology, Taiwan.
    Yang, L., Ye, Q., Ebong, A., Song, W., Zhang, G., Wang, J., & Ma, Y. (2011). High efficiency screen printed bifacial solar cells on monocrystalline CZ silicon. Progress in Photovoltaics: Research and applications, 19(3), 275-279.
    Yianoulis, P., Giannouli, M., & Kalogirou, S. Solar Selective Coatings-3.09.
    Young, C.-H., Chen, Y.-L., & Chen, P.-C. (2014). Heat insulation solar glass and application on energy efficiency buildings. Energy and Buildings, 78, 66-78.

    無法下載圖示 全文公開日期 2022/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE