簡易檢索 / 詳目顯示

研究生: 張筱嬋
Hsiao-Chan Chang
論文名稱: 利用射頻常壓電漿表面改質二氧化錳觸媒陰極用於改善鋅空氣電池效能
Improved Performance of Zinc-Air Battery Using Radio Frequency Atmospheric-Pressure Plasma for Surface Treatment on MnO2 Cathode
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 王丞浩
Chen-Hao Wang
王復民
Fu-Ming Wang
吳錦貞
Ching-Chen Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 117
中文關鍵詞: 鋅空氣電池陰極材料二氧化錳常壓電漿
外文關鍵詞: Zinc-air batteries
相關次數: 點閱:215下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


致謝 ................................................................................................................................... I 摘要 .................................................................................................................................. II Abstract .......................................................................................................................... III 目錄 ................................................................................................................................. V 圖目錄 .......................................................................................................................... VIII 表目錄 ............................................................................................................................ XI 第一章 緒論 .................................................................................................................... 1 1.1 前言 .................................................................................................................... 1 1.2 空氣電池............................................................................................................. 2 1.3 研究動機............................................................................................................. 3 第二章 文獻回顧 ............................................................................................................. 4 2.1 電池簡介............................................................................................................. 4 2.1.1 化學電池原理 .......................................................................................... 7 2.1.2 一次電池 .................................................................................................. 8 2.1.3 二次電池 .................................................................................................. 9 2.1.4 燃料電池 ................................................................................................ 10 2.2 金屬空氣電池[12-14] ........................................................................................... 12 2.2.1 金屬空氣電池之特性與機制 ................................................................. 13 2.2.2 鋅空氣電池 ............................................................................................ 17 2.2.3 鋅空氣電池之陽極氧化反應 ................................................................. 18 2.2.4 鋅空氣電池之陰極還原反應 ................................................................. 19 2.3 空氣電極之組成 ............................................................................................... 20 2.3.1 電解液 .................................................................................................... 21 2.3.2 氣體擴散層 ............................................................................................ 22 VI 2.3.3 催化層 .................................................................................................... 22 2.3.4 集電網 .................................................................................................... 23 2.3.5 碳材 ........................................................................................................ 23 2.3.6 空氣陰極之觸媒 .................................................................................... 24 2.3.7 二氧化錳 ................................................................................................ 26 2.4 電漿簡介........................................................................................................... 29 2.4.1 電漿反應機制 ........................................................................................ 31 2.4.2 電漿之激發方式 .................................................................................... 33 2.4.3 電漿之表面改質 .................................................................................... 34 第三章 實驗程序 ........................................................................................................... 37 3.1 實驗流程........................................................................................................... 37 3.2 實驗藥品........................................................................................................... 38 3.3 實驗設備........................................................................................................... 39 3.4 實驗方法........................................................................................................... 40 3.4.1 以固態法製備α相二氧化錳粉末[92] ..................................................... 40 3.4.2 空氣陰極之製備 .................................................................................... 42 3.4.3 以射頻常壓電漿作表面處理 ................................................................. 44 3.4.4 檢測儀器 ................................................................................................ 45 3.4.5 空氣陰極之氧氣 / 還原活性測試 ........................................................ 46 3.4.6 鋅空氣電池之全電池充放電測試 ......................................................... 47 3.4.7 空氣陰極之電化學組抗頻譜分析 ......................................................... 48 第四章 結果與討論 ....................................................................................................... 49 4.1 常壓電漿物種與溫度分析 ................................................................................ 50 4.2 水接觸角量測分析 ........................................................................................... 55 4.3 常壓電漿表面改質前後之材料分析 ................................................................ 57 4.3.1 FTIR ........................................................................................................ 57 VII 4.3.2 XRD ........................................................................................................ 61 4.3.3 SEM ........................................................................................................ 63 4.3.4 Raman ..................................................................................................... 68 4.4 射頻常壓電漿表面改質空氣陰極之電化學活性測試 ..................................... 70 4.4.1 電漿處理前後之線性掃描伏安(LSV)測試 ....................................... 70 4.4.2 電漿處理前後之充放電循環壽命 ......................................................... 73 4.4.3 電漿處理前後之全電池電化學阻抗頻譜(EIS)分析 ......................... 78 4.4.4 組裝鋅空氣電池之全電池放電測試 ...................................................... 88 第五章 結論與未來展望 ............................................................................................... 93 5.1 實驗結論........................................................................................................... 93 5.2 未來展望........................................................................................................... 94 參考文獻 ........................................................................................................................ 95

[1] 中華民國外交部, "巴黎協定"
[2] 台灣電力公司, "台電系統近十年發購電量," 2018.
[3] S. Evans, The amount of electricity generated in the UK last year fell to its lowest level in a quarter century, Carbon Brief analysis,https://www.mofa.gov.tw/igo/cp.aspx?n=5BCEFD9636EDFFE4, 2019.
[4] 張雲朋,「燃料電池:由空氣產生電能的新能源─鋅空氣燃料電池」,科學發展,
367 期,pp. 12-15,2003/7 月。
[5] L. Mao, T. Sotomura, K. Nakatsu, N. Koshiba, D. Zhang, and T Ohsaka,"Electrochemical characterization of catalytic activities of manganese oxides to oxygen reduction in alkaline aqueous solution," Journal of The Electrochemical Society, 149(4), pp.A504-A507, 2002.
[6] B. Scrosati, "History of lithium batteries," Journal of Solid State Electrochemistry,15(7-8), pp. 1623-1630, 2011.
[7] 李世興,「電池活用手冊」,全華,1999。
[8] B. C. Steele and A. Heinzel, "Materials for fuel-cell technologies," in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group: World Scientific, pp. 224-231, 2011.
[9] 洪芳州,「各類電池使用指南」,全華,1994。
[10] J. Ginsberg, The Columbia Dry Cell Battery. 2005.
[11] 石井弘毅,「圖解燃料電池」,世茂,2008。
[12] C. A. Sequeira, Environmental oriented electrochemistry, Elsevier, 1994.
[13] J. Goldstein, I. Brown, and B. Koretz, "New developments in the Electric Fuel Ltd.zinc/air system,", Journal of Power Sources, 80(1-2), pp. 171-179. 1999.
[14] 郭炳焜、李新海、楊松青,「化學電源:電池原理及製造技術」,中南大學出版,2009。
[15] B. Winther-Jensen, O. Winther-Jensen, M. Forsyth, and D. R. MacFarlane, "High rates of oxygen reduction over a vapor phase–polymerized PEDOT electrode," Science,321(5889), pp. 671-674, 2008.
[16] M. A. Rahman, X. Wang, and C. J. J. o. T. E. S. Wen, "High energy density metal-air batteries: a review," Journal of The Electrochemical Society, 160(10), A1759-A1771, 2013.
[17] D. Linden, "Handbook of Batteries, McGraw-Hill," 1994.
[18] J. S. Spendelow and A. Wieckowski, "Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media," Physical Chemistry Chemical Physics, 9(21), pp. 2654-2675, 2007.
[19] P. Christensen, A. Hamnett, and D. Linares-Moya, "Oxygen reduction and fuel oxidation in alkaline solution," Physical Chemistry Chemical Physics, 13(12), pp. 5206-5214, 2011.
[20] W. Vielstich, H. A. Gasteiger, and H. Yokokawa, "Handbook of fuel cells: fundamentals technology and applications: advances in electrocatalysis, materials, diagnostics and durability,"John Wiley & Sons, 2009.
[21] L. Jörisen, "Bifunctional Oxygen/Air Electrode," Journal Power Sources, 155, p. 23,2006.
[22] F. Cheng and J. Chen, "Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts," Chemical Society Reviews, 41(6), pp. 2172-2192, 2012.
[23] P. Pei, K. Wang, and Z. Ma, "Technologies for extending zinc-air battery's cyclelife: A review," Applied Energy, 128, pp. 315-324, 2014.
[24] P. Sapkota, H. Kim, "Zinc–air fuel cell, a potential candidate for alternative energy,"Journal of Industrial and Engineering Chemistry, 15(4), pp. 445-450, 2009.
[25] F. R. McLarnon and E. J. Cairns, "The secondary alkaline zinc electrode," Journal of The Electrochemical Society, 138(2), pp. 645-656, 1991.
[26] S. Müller, F. Holzer, and O. Haas, "Optimized zinc electrode for the rechargeable zinc–air battery," Journal of Applied Electrochemistry, 28(9), pp. 895-898, 1998.
[27] W. Sunu and D. N. S. Bennion, "Transient and Failure Analyses of the Porous Zinc Electrode I. Theoretical," Journal of The Electrochemical Society, 127(9), pp. 2007-2016,1980.
[28] T. P. Dirkse, "The behavior of the zinc electrode in alkaline solutions V. Supersaturated zincate solutions," Journal of The Electrochemical Society, pp. 1412-1415, 1981.
[29] C. Chakkaravarthy, A. A. Waheed, and H. V.K. Udupa, "Zinc—air alkaline batteries—A review," Journal of Power Sources, 6(3), pp. 203-228, 1981.
[30] Y. Li and H. Dai, "Recent advances in zinc–air batteries," Chemical Society Reviews,43(15), pp. 5257-5275, 2014.
[31] 曹玉佳,「鋅空氣燃料電池陰極之奈米化結構研發」,化學工程所,國立中正大學,2007。
[32] S. Suren and S. Kheawhom, "Development of a high energy density flexible zinc -air
battery," Journal of The Electrochemical Society, 163(6), pp. A846-A850, 2016.
[33] P. Sapkota, H. Kim, and E. Chemistry, "An experimental study on the performance of a zinc air fuel cell with inexpensive metal oxide catalysts and porous organic polymer separators," Journal of Industrial and Engineering Chemistry, 16(1), pp. 39-44, 2010.
[34] C. Iwakura, S. Nohara, N. Furukawa, and H. Inoue, "The possible use of polymer gel electrolytes in nickel/metal hydride battery," Solid State Ionics, 148(3-4), pp. 487-492, 2002.
[35] G. Zhang and X. G. Zhang, "MnO 2 /MCMB electrocatalyst for all solid-state alkaline zinc-air cells," Electrochimica Acta, 49(6), pp. 873-877, 2004.
[36] M. Maja, C. Orecchia, M. Strano, P. Tosco, and M. Vanni, "Effect of structure of the electrical performance of gas diffusion electrodes for metal air batteries," Electrochimica Acta, 46(2-3), pp. 423-432, 2000.
[37] F. Zhang, T. Saito, S. Cheng, M. A. Hickner, B. E. Logan, and technology, "Microbial fuel cell cathodes with poly (dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors," Environmental science & technology, 44(4), pp. 1490-1495,2010.
[38] D. Chartouni, N. Kuriyama, T. Kiyobayashi, J. Chen, and Compounds, "Air–metal hydride secondary battery with long cycle life," Journal of Alloys and Compounds, 330 , pp.766-770, 2002.
[39] W. Zhu, B. Poole, D. Cahela, and B. J. Tatarchuk, "New structures of thin air cathodes for zinc–air batteries," Journal of Applied Electrochemistry, 33(1), pp. 29-36, 2003.
[40] 劉霖錡,「鋅空氣電池空氣極的製備與性能」,材料與製造工程所,逢甲大學,2003。
[41] Y. Shao, J. Liu, Y. Wang, and Y. Lin, "Novel catalyst support materials for PEM fuel cells: current status and future prospects," Journal of Materials Chemistry, 19(1), pp. 46-59,2009.
[42] K. Kinoshita, "Carbon: electrochemical and physicochemical properties," 1988.
[43] M. Pirjamali and Y. Kiros, "Effects of carbon pretreatment for oxygen reduction in alkaline electrolyte," Journal of Power Sources, 109(2), pp. 446-451, 2002.
[44] M. Lai and A. Bergel, "Electrochemical reduction of oxygen on glassy carbon: catalysis by catalase," Journal of Electroanalytical Chemistry, 494(1), pp. 30-40, 2000.
[45] Z. Chen, A. Yu, R. Ahmed, H. Wang, H. Li, and Z. Chen, "Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery," Electrochimica Acta, 69, pp. 295-300, 2012.
[46] P. C. Foller, "Improved slurry zinc/air systems as batteries for urban vehicle propulsion," Journal of Applied Electrochemistry, 16(4), pp. 527-543, 1986.
[47] T. Wang, M. Kaempgen, P. Nopphawan, G. Wee, S. Mhaisalkar, and M. Srinivasan,
"Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for
zinc–air batteries," Journal of Power Sources, 195(13), pp. 4350-4355, 2010.
[48] Y. Li, Y. Liang, J. Feng, Ji-E. Kim, H. Wang, G. Hong, B. Zhang & H. Dai "Advanced zinc-air batteries based on high-performance hybrid electrocatalysts," Nature
Communications, 4, p. 1805, 2013.
[49] J. J. Xu and J. Yang, "Nanostructured amorphous manganese oxide cryogel as a high-
rate lithium intercalation host," Electrochemistry communications, 5(3), pp. 230-235, 2003.
[50] Y. Yang, Q. Sun, Y.-S. Li, H. Li, and Z.W. Fu, "A CoO x /carbon double-layer thin film
air electrode for nonaqueous Li-air batteries," Journal of Power Sources, 223, pp. 312-318,
2013.
[51] Yun-s Ding, Xiong-f Shen, S. Sithambaram, S. Gomez, R. Kumar, V. M. B. Crisostomo,
S. L. Suib, M Aindow, "Synthesis and catalytic activity of cryptomelane-type manganese
dioxide nanomaterials produced by a novel solvent-free method," Chemistry of Materials,
17(21), pp. 5382-5389, 2005.
[52] F. Cheng, Y. Su, J. Liang, Z. Tao, and J. Chen, "MnO 2 -based nanostructures as catalysts
for electrochemical oxygen reduction in alkaline media," Chemistry of Materials, 22(3), pp.
898-905, 2009.
[53] Y. Liang, Y Li, H. Wang, J. Wang, T. Regier and H. Dai, "Co 3 O 4 nanocrystals on
graphene as a synergistic catalyst for oxygen reduction reaction," Nature Materials, 10(10),
pp. 780, 2011.
[54] M. Yuasa, M. Nishida, T. Kida, N. Yamazoe, and K. Shimanoe, "Bi-functional oxygen
electrodes using LaMnO 3 /LaNiO 3 for rechargeable metal-air batteries," Electrochemical
Society, 158(5), pp. A605-A610, 2011.
[55] N. A. Merino, B. P. Barbero, P. Grange, and L. E. Cadús, "La 1−x Ca x CoO 3 perovskite-
type oxides: preparation, characterisation, stability, and catalytic potentiality for the total
oxidation of propane," Journal of Catalysis, 231(1), pp. 232-244, 2005.
[56] S. Pathak, J. Kuebler, A. Payzant, and N. Orlovskaya, "Mechanical behavior and
electrical conductivity of La 1− x Ca x CoO 3 (x= 0, 0.2, 0.4, 0.55) perovskites," Journal of Power
Sources, 195(11), pp. 3612-3620, 2010.
100

[57] G. Du, X. Liu, Y. Zong, T. A. Hor, A. Yu, and Z. Liu, "Co 3 O 4 nanoparticle-modified
MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc–air batteries,"
Nanoscale, 5(11), pp. 4657-4661, 2013.
[58] J. E. Post, "Manganese oxide minerals: Crystal structures and economic and
environmental significance," Proceedings of the National Academy of Sciences, 96(7), pp.
3447-3454, 1999.
[59] J. P. Brenet, "Electrochemical behaviour of metallic oxides," Journal of Power Sources,
4(3),pp. 183-190, 1979.
[60] M. Toupin, T. Brousse, and D. Bélanger, "Charge storage mechanism of MnO 2 electrode
used in aqueous electrochemical capacitor," Chemistry of Materials, 16(16), pp. 3184-3190,
2004.
[61] S. Devaraj and N. Munichandraiah, "Effect of crystallographic structure of MnO 2 on its
electrochemical capacitance properties," The Journal of Physical Chemistry C, 112(11), pp.
4406-4417, 2008.
[62] 李柏潔,「奈米結構之 Au/MnO 2 複合陰極觸媒材料對於高效能金屬空氣電池之
研」
[63] N. Wang, X. Cao, G. Lin, and Y. Shihe, "λ-MnO 2 nanodisks and their magnetic
properties," Nanotechnology, 18(47), pp. 475605, 2007.
[64] X. Wang and Y. Li, "Selected-control hydrothermal synthesis of α-and β-MnO 2 single
crystal nanowires," Journal of the American Chemical Society, 124(12), pp. 2880-2881,
2002.
[65] Y. Yang, L. Xiao, Y. Zhao, and F. Wang, "Hydrothermal synthesis and electrochemical
characterization of MnO 2 nanorods as cathode material for lithium batteries," International
Journal of Electrochemical Science, 3(1), pp. 67-74, 2008.
[66] M. Lu, S. Kharkwal, H. "Carbon nanotube supported MnO 2 catalysts for oxygen
reduction reaction and their applications in microbial fuel cells," Biosensors and
101

Bioelectronics, 26(12), pp. 4728-4732, 2011.
[67] S. B. Ma, K.W. Nam, W. S. Yoon, X. Q. Yang, K. Y. Ahn, K. H. Oh, K. B. Kim,
"Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-
storage applications," Journal of Power Sources, 178(1), pp. 483-489, 2008.
[68] A. Zolfaghari, F. Ataherian, M. Ghaemi, and A. Gholami, "Capacitive behavior of
nanostructured MnO 2 prepared by sonochemistry method," Electrochimica Acta, 52(8), pp.
2806-2814, 2007.
[69] H. Adelkhani, M. Ghaemi, and Compounds, "Characterization of manganese dioxide
electrodeposited by pulse and direct current for electrochemical capacitor," Journal of Alloys
and Compounds, 493(1-2), pp. 175-178, 2010.
[70] S. Liang, F. Teng, G. Bulgan, R. Zong, and Y. Zhu, "Effect of phase structure of MnO 2
nanorod catalyst on the activity for CO oxidation," The Journal of Physical Chemistry C,
112(14), pp. 5307-5315, 2008.
[71] J. Luo, H. T. Zhu, H. M. Fan, J. K. Liang, H. L. Shi, G. H. Rao, J.B. Li, Z. M. Du and
Z. X. Shen, "Synthesis of single-crystal tetragonal α-MnO2 nanotubes," The Journal of
Physical Chemistry C, 112(33), pp. 12594-12598, 2008.
[72] W. Li, Q. Liu, Y. Sun, J. Sun, R. Zou, G. Li, X. Hu, G. Song, G. Ma, J. Yang, Z. Chen
and J. Hu, "MnO 2 ultralong nanowires with better electrical conductivity and enhanced
supercapacitor performances," Journal of Materials Chemistry, 22(30), pp. 14864-14867,
2012.
[73] S. Chen, J. Zhu, Q. Han, Z. Zheng, Y. Yang, X. Wang, "Shape-controlled synthesis of
one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical
properties," Crystal Growth & Design, 9(10), pp. 4356-4361, 2009.
[74] M. Xu, L. Kong, W. Zhou, and H. Li, "Hydrothermal synthesis and pseudocapacitance
properties of α-MnO 2 hollow spheres and hollow urchins," The Journal of Physical
Chemistry C, 111(51), pp. 19141-19147, 2007.
102

[75] I. Roche, E. Chaînet, M. Chatenet, and J. Vondrák, "Carbon-supported manganese oxide
nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline
medium: physical characterizations and ORR mechanism," The Journal of Physical
Chemistry C, 111(3), pp. 1434-1443, 2007.
[76] Y. Cao, H. Yang, X. Ai, and L. F. Xiao, "The mechanism of oxygen reduction on MnO 2 -
catalyzed air cathode in alkaline solution," Journal of Electroanalytical Chemistry, 557, pp.
127-134, 2003.
[77] J. P. Brenet, "Electrochemical behaviour of metallic oxides," Journal of Power Sources,
4(3), pp. 183-190, 1979.
[78] 張家豪,魏鴻文,翁政輝,柳克強,李安平,寇崇善,吳敏文,曾錦清,蔡文發,
鄭國川,「電漿源原理與應用之介紹」,物理雙月刊,8,pp. 440-451,2006。
[79] C. H. J. H.K. Hwang, Y.J. Lee, Y.W. Ko, G.Y. Yeom, "Surface and Coatings
Technology," pp. 705-710, 2004.
[80] Y. H. L. C.H. Yi, G.Y. Yeom, "Surface and Coatings Technology," pp. 237-240, 2003.
[81] 徐逸明,洪昭南,游閔盛,郭有斌,黃傑,「常壓電漿原理、技術與應用」。
[82] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. J. Leprince, "Atmospheric
pressure plasmas: A review," Spectrochimica Acta Part B: Atomic Spectroscopy, 61(1), pp.
2-30, 2006.
[83] B. Eliasson and U. Kogelschatz, "Nonequilibrium volume plasma chemical
processing," IEEE transactions on plasma science, 19(6), pp. 1063-1077, 1991.
[84] S. Kment, P. Klusonc, H. Zabova, A. Churpita, M. Chichina, M. Cada, I. Gregora, J.
Krysa, Z. Hubicka, "Atmospheric pressure barrier torch discharge and its optimization for
flexible deposition of TiO 2 thin coatings on various surfaces," Surface and Coatings
Technology, 204(5), pp. 667-675, 2009.
[85] R. Sun, X. Yang, Y. Ohkubo, K. Endo, and K. Yamamura, "Optimization of Gas
Composition Used in Plasma Chemical Vaporization Machining for Figuring of Reaction-
103

Sintered Silicon Carbide with Low Surface Roughness," Scientific Reports, 8(1), pp. 2376,
2018.
[86] F. M. Wang, Y. L. Kuo, L. S. Huang, A. Ramar, and C. H. Su, "Fabrication of in
operando, self-growing, core-shell solid electrolyte interphase on LiFePO4 electrodes for
preventing undesirable high-temperature effects in Li-ion batteries," Electrochimica Acta,
pp. 260-267, 2018.
[87] Y. L. Kuo, K. H. Chang, T. S. Hung, K. S. Chen, and N. Inagaki, "Atmospheric-pressure
plasma treatment on polystyrene for the photo-induced grafting polymerization of N-
isopropylacrylamide," Thin Solid Films, 518(24), pp. 7568-7573, 2010.
[88] N. Inagaki, "Plasma Surface Modification and Plasma Polymerization, Technomic
Pub," Inc., Lancaster, PA, 1996.
[89] R. E. Belford, S. Sood, "Surface activation using remote plasma for hydrophilic
bonding at elevated temperature," Electrochemical and Solid-State Letters, 10(5), pp. H145-
H148, 2007.
[90] H. H. Chien, C. Y. Liao, Y. C. Hao, C. C. Hsu, I. C. Cheng, I. S. Yu, J. Z. Chen,
"Improved performance of polyaniline/reduced-graphene-oxide supercapacitor using
atmospheric-pressure-plasma-jet surface treatment of carbon cloth," Electrochimica Acta,
260, pp. 391-399, 2018.
[91] H. H. Lin, H. Yang, C. Y. Wu, S. Y. Hsu, and J. G. Duh, "Atmospheric Pressure Plasma
Jet Irradiation of N Doped Carbon Decorated on Li 4 Ti 5 O 12 Electrode as a High Rate Anode
Material for Lithium Ion Batteries," Journal of The Electrochemical Society, pp. A5146-
A5152, 2019.
[92] 呂明修,「α相二氧化錳觸媒於高充放電效率鋅空氣陰極之研究」,機械工程所,
國立台灣科技大學,2014。
[93] X. Deng, A. Y. Nikiforov, P. Vanraes, and C. Leys, "Direct current plasma jet at
atmospheric pressure operating in nitrogen and air," Journal of Applied Physics, 113(2), pp.
104

023305, 2013.
[94] R. Walkup, K. Saenger, and G. S. Selwyn, "Studies of atomic oxygen in O 2 +CF 4 rf
discharges by two‐photon laser‐induced fluorescence and optical emission spectroscopy,"
The Journal of Chemical Physics, 84(5), pp. 2668-2674, 1986.
[95] A. Georg, Y. Yuan, J. Engemann, A. Brockhaus, "Imaging of atomic oxygen in a
microwave excited oxygen plasma with two-dimensional optical emission spectroscopy,"
Surface and Coatings Technology, 97(1-3), pp. 734-741, 1997.
[96] R. X. Wang, W. F. Nian, H. Y. Wu, H. Q. Feng, K. Zhang, J. Zhang, W. D. Zhu, K. H.
Becker, J. Fang, "Atmospheric-pressure cold plasma treatment of contaminated fresh fruit
and vegetable slices: inactivation and physiochemical properties evaluation," The European
Physical Journal D, 66(10), pp. 276, 2012.
[97] T. Shirafuji, J. Hieda, O. Takai, N. Saito, T. Morita, O. Sakai, and K. Tachibana, "FTIR
study of methylene blue plasma degradation products through plasma treatment on water,"
in TENCON 2010-2010 IEEE Region 10 Conference, pp. 1938-1942: IEEE, 2010.
[98] SGL Carbon, https://www.sglcarbon.com/en/
[99] 嵩慶鐵氟龍大師, http://www.liakoptfe.com.tw/ptfe/knowledge.
[100] H. Lv, G. Ji, X. Liang, H. Zhang, and Y. Du, "A novel rod-like MnO 2 @ Fe loading
on graphene giving excellent electromagnetic absorption properties," Journal of Materials
Chemistry C, 3(19), pp. 5056-5064, 2015.
[101] D. Jaganyi, M. Altaf, and I. Wekesa, "Synthesis and characterization of whisker-
shaped MnO2 nanostructure at room temperature," Applied Nanoscience, 3(4), pp. 329-333,
2013.
[102] K. Wu, T. Ting, G. Wang, W. Ho and C. C. Shih, "Effect of carbon black content
on electrical and microwave absorbing properties of polyaniline/carbon black
nanocomposites," Polymer Degradation and Stability, 93(2), pp. 483-488, 2008.
[103] Sigma-Aldrich, https://www.sigmaaldrich.com/taiwan.html
105

[104] P. C. Li, C. C. Hu, H. Noda, and H. Habazaki, "Synthesis and characterization of
carbon black/manganese oxide air cathodes for zinc–air batteries: effects of the crystalline
structure of manganese oxides," Journal of Power Sources, 298, pp. 102-113, 2015.
[105] Z. Li, Y. Mi, X. Liu, S. Liu, S. Yang, and J. Wang, "Flexible graphene/MnO 2
composite papers for supercapacitor electrodes," Journal of Materials Chemistry, 21(38), pp.
14706-14711, 2011.
[106] F. Yang, X. Liu, R. Mi, L. Yuan, X. Yang, M. Zhong, Z. Fu, C Wang and Y. Tang,
"A Novel Radiation Method for Preparing MnO 2 /BC Monolith Hybrids with Outstanding
Supercapacitance Performance," Nanomaterials, 8(7), pp. 533, 2018.
[107] 鍾宇凡,「PEDOT:PSS 導電高分子/α相二氧化錳之複合觸媒用於鋅空氣電
池陰極之研究」,機械工程所,國立臺灣科技大學,2017。
[108] D. I. Raistrick, J. R. Macdonald, D. R. Franceschetti, The electrical analogs of
physical and chemical processes. Impedance spectroscopy: emphasizing solid materials and
systems, Wiley, New York, pp. 27-83, 1987.

無法下載圖示 全文公開日期 2024/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE