簡易檢索 / 詳目顯示

研究生: 詹志勝
zhi-sheng zhan
論文名稱: 電力諧波分析儀研製
Development of A Power Harmonic Analyzer
指導教授: 楊宗銘
Chung-Ming Young
口試委員: 劉益華
Yi-Hua Liu
林志銘
Chih-Ming Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 71
中文關鍵詞: 數位信號處理器諧波快速傅立葉轉換數據採集
外文關鍵詞: data acquisition, digital signal processor, harmonics, fast Fourior transform
相關次數: 點閱:185下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以實現盤面式之電力諧波分析儀為設計,考慮實用性、抗干擾性和精確度,其硬體架構採用定點式數位信號處理器(Digital Signal Processor, DSP)為核心,具有高速運算處理能力,所有量測功能都可以做到即時性的處理。配合電壓、電流感測器,傳送六通道的類比訊號至16位元A/D進行類比數位轉換,並且取樣頻率為偵測到第一個通道原點後,運算數個週期並取平均以取得較高精確的取樣頻率。
    本論文在訊號中擷取4個週期訊號共1024筆資料,並使用漢寧(Hanning)視窗進行各次諧波頻譜的特徵化,以滿足避免頻譜洩漏的條件。快速傅立葉轉換(FFT)運算過程中使用特殊指令進行複數快速傅立葉轉換,能快速檢測出電網中的三相電壓、電流的各次諧波,以進行諧波的即時分析處理,再將各次諧波數據利用RS-232傳送至PIC顯示。


    The goal of this thesis is to design and implement a power analyzer, in which practicality, immunity and precision are under considered. A high-performance digital-signal-processor (DSP) is employed as the core of the analyzer which provides real-time calculation for all available measurement functions. Three channels of voltage and three channels of current are sensered through the potential transformers (PT) and current transformers (CT) and are converted by six individual angalog-to-digital converters, which provides 16-bit resolution. An averaging procession is used to obtain precise results.
    For each input channel, four cycles of the signal are obtained from 1024 data points and the Hanning window is used to implement haracterization on the spectrum for avoiding spectral leakage. Some special instructions are used to execute the complex fast Fourier transform for analyzing the measured signals. Finally, all available sesults are sent to a seperated digital processor for display or futher processing.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖索引 VI 表索引 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 系統描述與研究方法 2 1.3 內容大綱 3 第二章 電力諧波概論 5 2.1 前言 5 2.2 諧波的定義 5 2.3 諧波分析、來源及影響 7 2.4 諧波管制標準 10 2.4.1 美國諧波的管制標準 11 2.4.2 歐洲諧波的管制標準 12 2.4.3 台電電力諧波的管制標準 13 第三章 數據取樣原理及FFT演算法 15 3.1 數據取樣原理 15 3.2 奈奎士取樣定理(Nyqusit Sampling Theorem) 15 3.3 信號截斷及視窗函數 18 3.4 FFT演算法 23 3.4.1 時域分取的FFT運算法 24 3.4.2 頻域分取的FFT運算法 27 3.4.3 實數序列的FFT運算法 28 3.5 FFT的定點式DSP實現 32 3.5.1 運算溢位及避免方法 32 3.5.2 記憶體編輯及規劃 34 3.5.3 FFT運算過程數據處理及FFT運算流程圖 36 3.5.4 FFT在F2812上的編輯 38 第四章 硬體架構與軟體規劃 40 4.1 前言 40 4.2 電壓電流感測器 40 4.3 數位信號處理器和類比數位轉換器介面控制 42 4.3.1 數位信號處理器 42 4.3.2 類比數位轉換器原理 43 4.3.3 數位信號處理器和類比數位轉換器介面設計 44 4.4 軟體規劃 46 4.4.1 程式流程介紹 46 4.4.2 TMS320F2812和PIC18資料傳輸 52 第五章 系統實作與量測 54 5.1 前言 54 5.2 Matlab模擬及FFT實作 55 5.3 諧波數據 57 第六章 結論與未來研究方向 66 6.1 結論 66 6.2 未來研究方向 67 參考文獻 68

    [1] J. W. Defty and G. C. Maples, “Harmonic Measurement Facility for Power Supply Systems,” IEE Proceedings, vol. 117, no. 10, pp. 1993-1996, 1970.
    [2] L. J. Jacovides, “Analysis of Induction Motor Drives with a Nonsinusoidal Supply Voltage Using Fourier Analysis,” IEEE Transactions on Industry Applications, vol. IA-9, pp. 741-747, 1973.
    [3] T. A. George and D. Bones, “Harmonic Power Flow Determination Using the Fast Fourier Transform,” IEEE Transaction on Power Delivery, vol. 6, no. 2, pp. 530-535, 1991.
    [4] R. S. Turgel, “Digital Wattmeter Using a Sampling Method,” IEEE Transactions on Instrumentation and Measurement, vol. IM-23, no. 4, pp. 337-341, 1974.
    [5] J. J. Hill and W. E. Alderson, “Design of a Microprocessor-Based Digital Wattmeter,” IEEE Transactions on Industrial and Control Instrumentation, vol. IECI-28, no. 3, pp. 180-184, 1981.
    [6] J. K. Kolanko, “Accurate Measurement of Power Energy and True RMS Voltage Using Synchronous Counting,” IEEE Transactions on Instrumentation and Measurement, vol. 42, no. 3, pp. 752-754, 1993.
    [7] C. J. Melhorn and M. F. McGranaghan, “Interpretation and Analysis of Power Quality Measurements,” IEEE Transactions on Industry Application, vol. 31, pp. 1363-1370, 1995.
    [8] R. J. Murphy, “Disturbance Recorders Trigger Detection and Protection,” IEEE Computer Applications in Power, pp. 24-28, 1995.
    [9] C. P. Young and W. L. Juang, “Real-time Intranet Controlled Virtual Instrument Multiple-circuit Power Monitoring,” Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference, vol. 2, pp. 673-677, 1999.
    [10] J. A. Orr, D. Cyganski and R. T. Saleh, “Design of a System for Automated Measurement and Statistics Calculations of Voltage and Current Harmonics,” IEEE Transactions on Power Delivery, no. 4, pp. 23-30, 1986.
    [11] J. C. Montano, A. Lopez, M. Castilla and J. Gutierrez, “A TMS320-Based Reactive Power Meter,” Industrial Electronics Society, vol. 1, pp. 267-272, 1990.
    [12] J. C. Montano, M. C. Ibanez, A. L. Ojeda and J. G. Benitez, “Measurement of the Load Admittance and Reactive Current RMS Value in the Frequency Domain,” IEE Proceedings, vol. 138, no. 2, pp.138-144, 1991.
    [13] G. N. Stenbakken, “A Wideband Sampling Wattmeter,” IEEE Transactions on Power Apparatus and Systems, vol. 103, no. 10, pp. 2919-2926, 1984.
    [14] G. N. Stenbakken, “High-Accuracy Sampling Wattmeter,” IEEE Transactions on Instrumentation and Measurement, vol. 41, no. 6, pp. 974-978, 1992.
    [15] “IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems,” IEEE Standard 519-1992, 1993.
    [16] S. Sviab, J. R. Mcqikin and J. S. Mcqikin, “Harmonics Causes Effects Measurement and Analysis: An Update,” IEEE Transactions on Industry Applications, vol. IA-26, no. 6, 1980.
    [17] J. Arrillaga, D. A. Bradley and P. S. Bodger, “Power System Harmonics,” John Wiley & Sons, New York, 1985.
    [18] W. Jewell, W.L. Miller and T. Casey, “Filtering Dispersed Harmonic Sources on Distribution”, IEEE Transactions On Power Delivery, vol.15, pp.1045-1051, 2000.
    [19] M. M. Saied, “A Parameter Study on the Voltage and Current Harmonic Distortion Factors in Distribution Networks”, Industry Applications Conference, vol. 5, pp. 3150-3157, 2000.
    [20] W. M. Grady and S. Santoso, “Understanding Power System Harmonics,” IEEE Power Engineering Review, vol. 21, no. 11, pp. 8-11, 2001.
    [21] I. W. Group, “IV, B. Power Line Harmonic Effects on Communication Line Interference,” IEEE Transactions on Power Apparatus and System, vol. PAS-104, no.9, pp 2578-2587, 1985.
    [22] C. K. Duffey and R. P. Stratford, “Update of Harmonic Standard IEEE-519 IEEE Recommended Practices and Requirements for Harmonic Control in Electric Power System,” IEEE Transactions, pp. 1025-2034, 1989.
    [23] 江榮城、郭宗益,“電力諧波管制標準研討與執行細則研擬”,台電工程月刊,第613 期,第35-51頁,民國88年。
    [24] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation of Complex Fourier Series,” Math Emetics Computation, vol. 19, pp. 297-301, 1965.
    [25] W. Cochran, J. Cooley, D. Favin, H. Helms, R. Kaenel, W. Lang, G. Jr. Maling, D. Nelson, C. Rader and P. Welch, “What is the Fast Fourier Transform?” IEEE Transactions Audio and Electroacustics, vol. AU-15, no.2, pp.45-55, 1967.
    [26] 林容益,“信號處理及進階馬達電力控制”,全華出版社,民國九十七年。
    [27] IEEE Power System Harmonic Committee, “Bibliography of Power System Harmonics, Part I,” IEEE Transactions Power Apparatus and Systems, vol. PAS-103, no. 9, pp. 2460-2469, 1984.
    [28] F. J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform”, Proceedings of the IEEE, vol. 66, no. 1, pp. 51-83, 1978.
    [29] 張雄偉、陳亮、徐光輝,“DSP晶片的原理與應用”,民國九十三年。
    [30] TMS320x281x DSP Technical Reference.
    [31] Interfacing the ADS-8364 to the TMS320F2812 DSP, Texas Instruments.

    QR CODE