簡易檢索 / 詳目顯示

研究生: 王博陞
Bo-Shen Wang
論文名稱: 微型光譜儀用於快速定量檢測尿液多重項目之開發與探討
Development and Discussion of Micro Spectrometer for Rapid Quantitative Detection of Multi-Items in Urine Testing
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 李敏凡
Min-Fan Lee
沈志霖
Ji-Lin Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 129
中文關鍵詞: 微型光譜儀尿液試紙尿液定量檢量線微機電系統定點照護檢驗
外文關鍵詞: Micro-Spectrometer, Urine test strips, Urine quantitative, Calibration Curve, MEMS, POCT
相關次數: 點閱:366下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

根據「臺灣糖尿病年鑑2019」指出,我國罹患糖尿病人數以每年16萬人增加中,其中絕大多數是第2型糖尿病,且臺灣慢性腎臟病人口密度高達11.9%,僅次於日本與美國,而洗腎人口密度已達世界第一;雖然現代醫療進步,可以倚靠血液透析的方法延續生命,然而腎病支出已造成健保沉重負擔,2020年的整體醫療費是562億元,而用於末期腎病患者進行洗腎的經費就佔84%。
為使得大眾能方便且快速判斷可能罹患的腎臟病,大多使用尿液試紙來測量,其方法雖簡單但因試紙有半定量的緣故、且判斷結果會因主觀條件與客觀條件造成差異;因此,本論文目標為將基於微機電系統(Micro-Electromechanical Systems,MEMS)技術製程的微型光譜儀用於尿液常規的多重項目量測,且能精確定量該量測項目物質的多寡。
在本論文中,以微型光譜儀作為量測系統,對尿液試紙的十二項目 1. Leukocytes (白血球酯酶);2. Nitrite (亞硝酸鹽);3. Urobilinogen (尿膽素原);4. Protein (尿蛋白);5. pH (酸鹼值);6. Occult Blood (潛血);7. Specific Gravity (比重);8. Ketone (尿酮);9. Bilirubin (尿膽紅素);10. Glucose (葡萄糖);11. Microalbumin (微白蛋白);12. Creatinine (肌酸酐) 進行量測。結果證實利用微型光譜儀在各檢測項目中檢量線的決定係數R^2皆有0.95以上,因此可證實微型光譜儀用於尿液常規多重項目的可行性,且量測結果在水準之上。
透過微型尿液檢測平台,不僅省去使用大型檢測機器成本、時間與空間,也讓操作更加簡便,更使得量測場域從大型檢驗所轉變到辦公室、診所、居家、甚至是救護車上,實現定點照護檢驗(Point of Care Testing,POCT)成效,且對於未來新增其他檢體的量測研究都有顯著的提升。


According to the "Taiwan Diabetes Yearbook 2019", the number of diabetic patients in Taiwan is increasing by 160,000 each year, and most of the patients have type 2 diabetes. Reaching the first place in the world, the population density of chronic kidney disease in Taiwan is as high as 11.9%, which is second only to Japan and the United States; although the latest medical advances have made it possible to extend life by relying on hemodialysis, the expenditure on kidney disease has caused a heavy burden on health insurance. The overall medical expenses in 2020 were 56.2 billion dollars, 84% of which were spent on dialysis for patients with end-stage renal disease.
  In order to enable the public to determine possible kidney diseases easily and quickly, most of the urine test strips are used to measure the kidney disease. Although the method is simple, the fact that the nature of test paper is semi-quantitative and the judgmental results will be different due to subjective and objective conditions. Consequently, the objective of this paper is to accurately quantify the number of substances in the measurement item by applying the MEMS-based technology to the routine multiple-item measurement of urine.
  In this paper, the micro-spectrometer is used as a measurement system for 12 items of urine test strips. The measurement items include 1. Leukocytes; 2. Nitrite; 3. Urobilinogen; 4. Protein; 5. pH; 6. Occult blood; 7. Specific Gravity; 8. Ketone; 9. Bilirubin; 10. Glucose; 11. Microalbumin; 12. Creatinine. The results confirmed that the coefficient of determination (R^2) was more than 0.95 in the calibration curves for each detection item by using the micro-spectrometer, and thus the feasibility of using the micro-spectrometer for routine multiple items of urine is verified, and the measurement results are above the standard.
  The micro urine testing platform not only eliminates the cost, time, and space of using large testing machines but also makes the operation more convenient. Furthermore, it allows the measurement area to change from large testing laboratories to offices, clinics, homes, and even ambulances, realizing the effectiveness of POCT while significantly improving the measurement study on other new specimens in the future.

誌謝 I 摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究背景 1 1.3 研究動機 2 1.4 論文架構 3 第二章 文獻探討 4 2.1 光譜學與光譜儀 4 2.2 分析化學中常見檢測方法 5 2.3 定點照護檢驗 6 2.4 腎功能 7 2.5 尿液常規 7 2.6 常規項目與疾病關係 8 2.7 尿液試紙 12 第三章 量測系統與穩定性驗證 14 3.1 光譜晶片及測試驗證 14 3.1.1 光譜晶片 14 3.1.2 洋紅測試 15 3.2 反射光譜與吸光度 17 3.2.1 光源選擇 17 3.2.2 反射光譜與吸光度計算 19 3.3 光學校正平台觀測 20 3.4 機台穩定性測試 23 3.5 試紙穩定性測試 27 3.6 與市售機台之比較 31 第四章 十二項目之標準液濃度量測 34 4.1 標準液倍率稀釋 34 4.2 標準液濃度量測 38 4.2.1 Leukocytes濃度量測 39 4.2.2 Nitrite濃度量測 43 4.2.3 Urobilinogen濃度量測 47 4.2.4 Protein濃度量測 51 4.2.5 pH濃度量測 55 4.2.6 Occult Blood濃度量測 59 4.2.7 Specific Gravity濃度量測 63 4.2.8 Ketone濃度量測 67 4.2.9 Bilirubin濃度量測 71 4.2.10 Glucose濃度量測 75 4.2.11 Microalbumin濃度量測 79 4.2.12 Creatinine濃度量測 83 4.3 特徵波長 87 第五章 標準液檢量線建模及結果分析 88 5.1 檢量線建模 88 5.1.1 檢量線模型 88 5.1.2 決定係數 90 5.2 定性與定量 91 5.3 十二項目之檢量線建模 94 5.3.1 Leukocytes檢量線分析 94 5.3.2 Nitrite檢量線分析 96 5.3.3 Urobilinogen檢量線分析 98 5.3.4 Protein檢量線分析 100 5.3.5 pH檢量線分析 102 5.3.6 Occult Blood檢量線分析 104 5.3.7 Specific Gravity檢量線分析 107 5.3.8 Ketone檢量線分析 109 5.3.9 Bilirubin檢量線分析 111 5.3.10 Glucose檢量線分析 113 5.3.11 Microalbumin檢量線分析 115 5.3.12 Creatinine檢量線分析 120 第六章 結論與未來展望 123 6.1 結論 123 6.2 未來展望 124 參考文獻 125

[1] Hoppit, J. (2011). The nation, the state, and the first industrial revolution. Journal of British Studies, 50(2), 307-331.
[2] International Agency for Research on Cancer. (1999). Some chemicals that cause tumours of the kidney or urinary bladder in rodents and some other substances. IARC monographs on the evaluation of carcinogenic risks to humans, 73, 131-182.
[3] Collarile, P., Bidoli, E., Barbone, F., Zanier, L., Del Zotto, S., Fuser, S., ... & Serraino, D. (2017). Residence in proximity of a coal-oil-fired thermal power plant and risk of lung and bladder cancer in north-eastern Italy. A population-based study: 1995–2009. International journal of environmental research and public health, 14(8), 860.
[4] Cui, H. Z., Wang, L. M., Zhao, X., Liu, Y. Y., Wang, S. X., Li, X. H., ... & Chen, J. X. (2013). Metabonomics-based study of clinical urine samples in suboptimal health with different syndromes. Evidence-Based Complementary and Alternative Medicine, 2013.
[5] Guyton, A. C., & Hall, J. E. (1986). Textbook of medical physiology (Vol. 548). Philadelphia: Saunders.
[6] Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S., Hudspeth, A. J., & Mack, S. (Eds.). (2000). Principles of neural science (Vol. 4, pp. 1227-1246). New York: McGraw-hill.
[7] Cavanaugh, C., & Perazella, M. A. (2019). Urine sediment examination in the diagnosis and management of kidney disease: core curriculum 2019. American Journal of Kidney Diseases, 73(2), 258-272.
[8] Bunker, P. R., & Jensen, P. (2006). Molecular symmetry and spectroscopy (Vol. 46853). NRC research press.
[9] Ma, J., Meng, F., Zhou, Y., Wang, Y., & Shi, P. (2018). Distributed water pollution source localization with mobile UV-visible spectrometer probes in wireless sensor networks. Sensors, 18(2), 606.
[10] Chiu, W. H., Kong, W. Y., Su, Y. J., Wen, J. W., Tsai, C. M., Hong, C., ... & Ko, C. H. (2022). A Faster, Novel Technique to Detect COVID-19 Neutralizing Antibodies. Medical Science Monitor, 28.
[11] Ogunfowokan, A. O., Adekunle, A. S., Oyebode, B. A., Oyekunle, J. A. O., Komolafe, A. O., & Omoniyi-Esan, G. O. (2019). Determination of heavy metals in urine of patients and tissue of corpses by atomic absorption spectroscopy. Chemistry Africa, 2(4), 699-712.
[12] Svane, S., & Karring, H. (2019). A comparison of the transition metal concentrations in the faeces, urine, and manure slurry from different livestock animals related to environmentally relevant microbial processes. Cogent Chemistry, 5(1), 1644702.
[13] Jooste, P. L., & Strydom, E. (2010). Methods for determination of iodine in urine and salt. Best Practice & Research Clinical Endocrinology & Metabolism, 24(1), 77-88.
[14] Li, C. R., Yang, C. C., Tsai, H. Y., Chou, C. H., Huang, K. C., & Lin, Y. H. (2021, August). Quantifying the glucose concentration in urine test strip with a color-calibrated imaging system. In 2021 IEEE Sensors Applications Symposium (SAS) (pp. 1-6). IEEE.
[15] Nichols, J. H. (2020). Point-of-care testing. In Contemporary Practice in Clinical Chemistry (pp. 323-336). Academic Press.
[16] Karsten, S. L., Tarhan, M. C., Kudo, L. C., Collard, D., & Fujita, H. (2015). Point-of-care (POC) devices by means of advanced MEMS. Talanta, 145, 55-59.
[17] Bellomo, R., Kellum, J. A., & Ronco, C. (2004). Defining acute renal failure: physiological principles. Intensive care medicine, 30(1), 33-37.
[18] Tyndall, M. W., Nasio, J., Maitha, G., Ndinya-Achola, J. O., Plummer, F. A., Sellors, J. W., ... & Chernesky, M. A. (1994). Leukocyte esterase urine strips for the screening of men with urethritis--use in developing countries. Sexually Transmitted Infections, 70(1), 3-6.
[19] James, G. P., Paul, K. L., & Fuller, J. B. (1978). Urinary nitrite and urinary-tract infection. American journal of clinical pathology, 70(4), 671-678.
[20] Lundberg, J. O. N., Carlsson, S., Engstrand, L., Morcos, E., Wiklund, N. P., & Weitzberg, E. (1997). Urinary nitrite: more than a marker of infection. Urology, 50(2), 189-191.
[21] Hamoud, A. R., Weaver, L., Stec, D. E., & Hinds Jr, T. D. (2018). Bilirubin in the liver–gut signaling axis. Trends in Endocrinology & Metabolism, 29(3), 140-150.
[22] Khitan, Z. J., & Glassock, R. J. (2019). Foamy Urine: Is This a Sign of Kidney Disease?. Clinical Journal of the American Society of Nephrology, 14(11), 1664-1666.
[23] Abid, O., Sun, Q., Sugimoto, K., Mercan, D., & Vincent, J. L. (2001). Predictive value of microalbuminuria in medical ICU patients: results of a pilot study. Chest, 120(6), 1984-1988.
[24] Chiras, D. D. (2013). Human biology. Jones & Bartlett Publishers.
[25] 陳學甲,"尿液試紙檢測紀錄系統之設計",碩士論文,明新科技大學資訊管理系碩士班,2016
[26] Dana, E. S. (1885). A text-book of mineralogy: with an extended treatise on crystallography and physical mineralogy. J. Wiley & sons.
[27] Newman, J. C., & Verdin, E. (2014). Ketone bodies as signaling metabolites. Trends in Endocrinology & Metabolism, 25(1), 42-52.
[278] Röder, P. V., Wu, B., Liu, Y., & Han, W. (2016). Pancreatic regulation of glucose homeostasis. Experimental & molecular medicine, 48(3), e219-e219.
[29] Wu, H. Y., Peng, Y. S., Chiang, C. K., Huang, J. W., Hung, K. Y., Wu, K. D., ... & Chien, K. L. (2014). Diagnostic performance of random urine samples using albumin concentration vs ratio of albumin to creatinine for microalbuminuria screening in patients with diabetes mellitus: a systematic review and meta-analysis. JAMA internal medicine, 174(7), 1108-1115.
[30] Stevens, P. E., Levin, A., & Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members*. (2013). Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Annals of internal medicine, 158(11), 825-830.
[31] Stoves, J., Lindley, E. J., Barnfield, M. C., Burniston, M. T., & Newstead, C. G. (2002). MDRD equation estimates of glomerular filtration rate in potential living kidney donors and renal transplant recipients with impaired graft function. Nephrology Dialysis Transplantation, 17(11), 2036-2037.
[32] Hallan, S. I., Ritz, E., Lydersen, S., Romundstad, S., Kvenild, K., & Orth, S. R. (2009). Combining GFR and albuminuria to classify CKD improves prediction of ESRD. Journal of the American Society of Nephrology, 20(5), 1069-1077.
[33] Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., ... & Magliano, D. J. (2022). IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes research and clinical practice, 183, 109119.
[34] Voswinckel, P. (1994). A marvel of colors and ingredients. The story of urine test strips. Kidney International Supplement, (47).
[35] Ravindran, A., Nirmal, D., Prajoon, P., & Rani, D. G. N. (2020). Optical Grating Techniques for MEMS-Based Spectrometer—A Review. IEEE Sensors Journal, 21(5), 5645-5655.
[36] 李宜運,"微機電光譜晶片之自動校正系統開發暨非監督品質分類研究",碩士論文,國立臺灣科技大學自動化及控制研究所,2021
[37] Sommer, L. (2012). Analytical absorption spectrophotometry in the visible and ultraviolet: the principles. Elsevier.
[38] Cho, J., Park, J. H., Kim, J. K., & Schubert, E. F. (2017). White light‐emitting diodes: history, progress, and future. Laser & photonics reviews, 11(2), 1600147.
[39] 邱韋懷,"晶片型光譜儀波長校正程序開發及尿蛋白濃度測量之應用",碩士論文,國立臺灣科技大學自動化及控制研究所,2018
[40] Lipták, B. G. (Ed.). (2013). Process Control: Instrument Engineers' Handbook. Butterworth-Heinemann.
[41] 黃國風,"尿液試紙連續暴露於空氣中之穩定性探討",奇美醫院臨床病理部鏡檢組,2011
[42] Aneja, K. R. (2007). Experiments in microbiology, plant pathology and biotechnology. New Age International.
[43] Moosavi, S. M., & Ghassabian, S. (2018). Linearity of calibration curves for analytical methods: A review of criteria for assessment of method reliability (Vol. 109). London, UK: IntechOpen Limited.
[44] Broekaert, J. A. (2015). Daniel C. Harris: Quantitative chemical analysis.
[45] Whiteker, R. A. (1960). Qualitative Analysis and Electrolytic Solutions (King, Edward J.). Journal of Chemical Education, 37(7), 380.
[46] Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2013). Fundamentals of analytical chemistry. Cengage learning.
[47] Ferre, F. (1992). Quantitative or semi-quantitative PCR: reality versus myth. Genome Research, 2(1), 1-9.

無法下載圖示 全文公開日期 2025/11/07 (校內網路)
全文公開日期 2028/11/07 (校外網路)
全文公開日期 2028/11/07 (國家圖書館:臺灣博碩士論文系統)
QR CODE