簡易檢索 / 詳目顯示

研究生: 吳宜隆
Yi-Lung Wu
論文名稱: 極簡式巴倫器與二維合成傳輸線之晶片實現
ng Balun and Chip Realization of Two-Dimensional Synthesized Transmission Lines
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 曾昭雄
Chao-Hsiung Tseng
張嘉展
Chia-Chan Chang
瞿大雄
Tah-Hsiung Chu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 82
中文關鍵詞: 巴倫器L型匹配電路平衡天線二維週期性合成傳輸線布洛赫定理枝幹耦合器鼠競耦合器威爾京森分波器整合被動元件製程
外文關鍵詞: balun, L-section matching network, balance antenna, two-dimensional synthesized transmission line, Bloch theorem, branch line coupler, rat race coupler, Wilkinson power divider, integrated passive device
相關次數: 點閱:455下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文共有獨立之兩部分研究。第一部分,吾人提出「極簡式非耦合巴倫器」之創新構想,係以電路匹配之構想出發,搭配平衡端之巧妙電路佈局規劃,大幅降低電路複雜度,僅需單一電感器即可進行完成設計,本設計可有效地縮小巴倫器所需佔用之面積,更能降低額外傳輸損耗,實現電路微型化、低傳輸損耗及降低設計成本、並成功將其實現於印刷電路板與被動整合元件製程,其操作頻帶涵蓋UHF至K波段。吾人更將此極簡式非耦合式巴倫器與平衡偶極天線進行整合設計,藉由天線整合應用,驗證本設計可直接針對前、後級電路之複數輸出入阻抗進行單端-差動訊號之轉換。
本論文之第二部分,則延續前人「二維週期性合成傳輸線」之基礎,於IPD製程提出一新式電路單元佈局,實現二維週期性合成傳輸線之晶片整合設計,該二維週期性合成傳輸線可於晶片空間內進行任意佈局,實現電路微小化、高佈局密度之設計,本論文據此成功完成多款晶片化之二維週期性合成傳輸線。最後,吾人更進一步運用二維週期性合成傳輸線實現晶片化枝幹耦合器、鼠競耦合器以及威爾京森分波器等被動射頻電路,成功達到縮小電路尺寸之目的,且於操作頻帶內具良好之電氣響應。


This thesis consisits of two independent researches. The first part investigates a novel idea for realizing baluns with very simple architecture and design methodology. The way the port connections makes the balun function no more than a routine matching network, in which all kinds of matching techniques can be applied to transform the complex loads. To minimize the design complexity, an L-section network is incorporated to give rise to the so-called “minimal non-coupling balun”. In this thesis, three minimal baluns implemented on PCB and IPD processes are introduced. All designs are developed based on a single inductor without any coupling scheme. The PCB and on-chip examples are respectively developed at the UHF, C- and K- bands. Very compact size, low power dissipation and acceptable output balance are observed. The concept is further verified by a balance antenna integrated with the minimal balun with arbitrary complex load impedances.
The second part of this thesis, based on the concept of two-dimensional periodic synthesized transmission line, proposes a new unit cell on the IPD process. Benefitting from the square footprint and symmetrical arrangement of the proposed unit cell, the two-dimensional synthesized line exhibits extraordinary flexibility in layout arrangement within a given space. On-chip branch-line coupler, rat-race coupler and Wilkinson power divider are developed by the two-dimensional synthesized line with not only a substantial miniaturization ratio but comparable circuit performances.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第1章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 2 1.3 研究貢獻 5 1.4 論文組織 6 第2章 極簡式非耦合巴倫器 7 2.1 前言 7 2.2 電路架構與基本概念 8 2.3 以印刷電路板實現極簡式非耦合巴倫器 12 2.3.1 設計原理與電路佈局 12 2.3.2 實驗結果與討論 15 2.4 以整合被動元件製程實現極簡式非耦合巴倫器 17 2.4.1 矽基板整合被動元件製程之簡介 17 2.4.2 設計原理與電路佈局 18 2.4.3 實驗結果 21 2.4.4 結果討論與後模擬 23 2.4.5 極簡式巴倫器之改良設計以抑制共模訊號 26 2.5 極簡式巴倫器之應用 32 2.5.1 整合天線之設計流程與電路佈局 32 2.5.2 實驗結果與討論 36 2.6 結語 42 第3章 二維週期性合成傳輸線之晶片化實現 43 3.1. 前言 43 3.2. 二維週期性合成傳輸線 44 3.2.1. 設計原理 44 3.2.2. 電路佈局 48 3.2.3. 實驗結果與討論 54 3.3. 枝幹耦合器、鼠競耦合器與威爾京森分波器之晶片設計 58 3.3.1. 電路佈局 58 3.3.2. 實驗結果與討論 62 3.4. 結語 72 第4章 結論 73 4.1 總結 73 4.2 未來發展 74 參考文獻 75

[1] V. Gonzalez-Posadas, C. Martin-Pascual, J. L. Jimenez-Martin, and D. Segovia-Vargas, "Lumped-element balun for UHF UWB printed balanced antennas," IEEE Trans. Antennas and Propag., vol. 56, no. 7, pp. 2102-2107, Jul. 2008.
[2] M. Thian, M. Tiebout, N. B. Buchanan, V. F. Fusco, and F. Dielacher, “A 76–84 GHz SiGe power amplifier array employing low-loss four-way differential combining transformer,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 2, pp. 931-938, Feb. 2013.
[3] S. Kawai, Y. Takayama, R. Ishikawa, and K. Honjo, “A high-efficiency low-distortion GaN HEMT Doherty power amplifier with a series-connected load,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 2, pp. 352–360, Feb. 2012.
[4] H.-K. Chiou and J.-Y. Lin, “Symmetric offset stack balun in standard 0.13-μm CMOS technology for three broadband and low-loss balanced passive mixer designs,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 6, pp. 1529–1538, Jun. 2011.
[5] H.-C. Kuo, H.-L. Yue, Y.-W. Ou, C.-C. Lin, and H.-R. Chuang, “A 60-GHz CMOS sub-harmonic RF receiver with integrated on-chip artificial-magnetic-conductor Yagi antenna and balun bandpass filter for very-short-range gigabit communications,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1681–1691, Apr. 2013.
[6] W. R. Deal, N. Kaneda, J. Sor, Y.Qian, and T. Itoh, “A new quasi-Yagi antenna for planar active antenna arrays,” IEEE Trans. Microw. Theory Techn., vol. 48, no. 6, pp. 910–918, Jun. 2000.
[7] S. Frankel, “Reactance Networks for Coupling Between Unbalanced and Balanced Circuits,” Proc. IRE, vol. 29, no. 9, pp. 486-493, Sep. 1941.
[8] N. Marchand, “Transmission-line conversion transformers,” Electronics,vol. 17, no. 12, pp. 142–145, 1944.
[9] A. C. Chen, A.-V. Pham, and R. E. Leoni, III, “Development of low-loss broad-band planar baluns using multilayered organic thin films,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 11, pp. 3648–3655, Nov. 2005.
[10] B.-H. Lee, D.-S. Park, S.-S. Park, and M.-C. Park, “Design of new three-line balun and its implementation using multilayer configuration,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 4, pp. 1405–1414, Apr. 2006.
[11] K. S. Ang and I. D. Robertson, “Analysis and design of impedance- transforming planar Marchand baluns,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 2, pp. 402–406, Feb. 2001.
[12] R. Phromloungsri, M. Chongcheawchamnan, and I. D. Robertson, “Inductively compensated parallel coupled microstrip lines and their applications,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 9, pp. 3571–3582, Sep. 2006.
[13] C.-H. Lin, C.-H Wu, G.-T Zhou, and T.-G. Ma, “General compensation method for a marchand balun with an arbitrary connecting segment between the balance ports,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 2821-2830, Aug. 2013.
[14] J.-C. Lu, C.-C. Lin, and C.-Y. Chang, “Exact synthesis and implementation of new high-order wideband marchand baluns,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 1, pp. 80–86, Jan. 2011.
[15] K. S. Ang, Y. C. Leong, and C. H. Lee, “Analysis and design of miniaturized lumped-distributed impedance-transforming baluns,” IEEE Trans. Microw. Theory Techn., vol. 51, no. 3, pp. 1009–1017, Mar. 2003.
[16] C. Liu and W. Menzel, “Broadband via-free microstrip balun using metamaterial transmission lines,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 437–439, Jul. 2008.
[17] D. W. Lew, J. S. Park, D. Ahn, N. K. Kang, C. S. Yoo, and J. B. Lim, “A design of ceramic chip balun using multilayer configuration,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 1, pp. 220-224, Jan. 2001.
[18] K.-Y. Chen, B.-X. Fang, and H.-H. Yeh, “IPD broadband balun design for GSM applications,” IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), Singapore, Dec. 2010, pp. 1–4.
[19] Y.-S. Lin, J.-H. Lee, S.-L. Huang, C.-H. Wang, C.-C. Wang, and S.-S. Lu, “Design and analysis of a 21–29-GHz ultra-wideband receiver front-end in 0.18-μm COMS technology,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 8, pp. 2590–2604, Aug. 2012.
[20] H.-M Hsu, J.-S. Huang, S.-Y. Chen, and S.-H. Lai, “Design of an on-chip balun with a minimum amplitude imbalance using a symmetric stack layout,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 4, pp. 814-819, Apr. 2010.
[21] H.-B. Zhang, M. Cai, X. He, H. Wu, Z. Li, and F. Tang, “Broadband and high-K passive balun using 16 sides geometry for silicon-based RFICs,” IET Electron. Lett., vol. 50, no. 4, pp. 288-290, Feb. 2014.
[22] W.-Z. Chen, W.-H. Chen, and K.-C. Hsu, “Three-dimensional fully symmetric inductors, transformer, and balun in CMOS technology,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 7, pp. 1413–1423, Jul. 2007.
[23] R. C. Frye, P. Hlaing, and K. Liu, “High CMRR in reduced-coupling monolithic baluns,” IEEE MTT-S Int. Microw. Symp. Dig., 2010, pp. 1560-1563.
[24] V. A. Solomko, and P. Weger, “A fully integrated 3.3–3.8-GHz power amplifier with autotransformer balun,” IEEE Trans. Microw. Theory Techn., Vol. 57 , no. 9, pp. 2160-2172, Sep. 2009.
[25] B.-H. Ku, S.-H. Baek, and S. C. Hong, “A wideband transformer-coupled CMOS power amplifier for X-band multifunction chips,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 6, pp. 1599-1609, Jun. 2011.
[26] C.-H. Lin, C.-N. Kuo, and M.-C. Kuo, “A 1.2-V 5.2-mW 20-30-GHz wideband receiver front-end in 0.18-m CMOS,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 11, pp. 3502-3512, Nov. 2012.
[27] J. Javidan, M. Atarodi, and H. C. Luong, “High power amplifier based on a transformer-type power combiner in CMOS technology,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 11, pp. 838–842, Nov. 2010.
[28] D. Kuylenstierna and P. Linner, “Is the second order lattice balun a good solution in MMICs—a comparison with a direct-coupled transformer balun,” in MTT-S Int. Microw. Symp. Dig., 2005, pp. 539–542.
[29] V. Issakov, H. Knapp, W. Bakalski, M. Wojnowski, A. Thiede, and W. Simburger, “Compact on-chip 90° and 180° splitters/combiners in silicon technology for 24 GHz applications,” in Proc. 40th Eur. Microw. Conf., 2010, pp. 1214–1217.
[30] I. Toyoda, T. Hirota, T. Hiraoka, and T. Tokumitsu, “Multilayer MMIC branch-line coupler and broad-side coupler,” in Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest, New Mexico, 1-3 June 1992, pp. 79–82.
[31] Y.-C. Chiang and C.-Y. Chen, “Design of a wide-band lumped-element 3-dB quadrature coupler,” IEEE trans. Microwave Theory Tech., vol. 49, no. 3, pp. 476–479, Mar. 2001.
[32] H.okabe, C. Caloz, and T. Itoh, “A compact enhanced-bandwidth hybrid ring using an artificial lumped-elemt left-handed transmission-line section,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 798-804, Mar. 2004.
[33] Lai, C. Caloz, and T. Itoh, “Composite right/left-handed transmission line metamaterials,” IEEE Microw. Mag., vol. 5, no. 3, pp. 34–50, Sep. 2004.
[34] I-H. Lin, C. Caloz, and T. Itoh, “A branch-line coupler with two arbitrary operating frequencies using left-handed transmission lines,” in IEEE-MTT Int. Symp. Dig., Philadelphia, PA, vol. 1, pp.325-327, 2003.
[35] P.-L. Chi and T. Itoh, “Miniaturized dual-band directional couplers using composite right/left-handed transmission structures and their applications in beam pattern diversity systems,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 5, pp. 1207–1215, May. 2009.
[36] F.-R. Yang, K.-P. Ma, Y. Qian and T. I. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits,” IEEE trans. Microwave Theory Tech., vol. 47, no. 8, pp. 1509–1514, Aug. 1999.
[37] K.-O. Sun, S.-J. Ho, C.-C. Yen and D. van der Weide, “A compact branch-line coupler using discontinuous microstrip lines,” IEEE Microwave Wireless Comp. Lett., vol. 15, no. 8, pp. 519–520, Aug. 2005.
[38] K. Hettak, G. A. Morin, and M.G. Stubbs, “Compact MMIC CPW and asymmetric CPS branch-line couplers and Wilkinson dividers using shunt and series stub loading, ” IEEE Trans. Microwave Theory Tech., vol. 53, no. 5, pp. 1624–1635, May 2005.
[39] H.-W. Hsu, C.-H. Lai and T.-G. Ma, “A miniaturized dual-mode ring bandpass filter,” in IEEE Microw. Wireless Compon. Lett., vol. 20, no. 10, pp. 542–544, Oct. 2010.
[40] C.-W. Wang, T.-G. Ma and C.-F. Yang, “A new planar artificial transmission line and itsapplications to a miniaturized Butler matrix,” in IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2792–2801, Dec. 2007.
[41] C.-C. Wang, C.-H. Lai and T.-G. Ma, “Novel uniplanar synthesized coplanar waveguide and the applicationto miniaturized rat-race coupler,” in 2010MTT-S Int. Microw. Dig., pp.708–711,May 2010.
[42] C.-C. Chen, C.-K.C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 6, pp. 1637-1647, June 2004.
[43] 蘇柏丰, 以二維合成傳輸線實現微型化微波被動元件, 國立台灣科技大學電機工程研究所, 碩士論文, 民國102.
[44] D. M. Pozar, Microwave Engineering, John Wiley & Sons, 2005.
[45] S. G. Kim and K. Chang, “Ultrawide-band transitions and new microwave components using double-sided parallel-strip lines,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 9, pp. 2148–2152, Sep. 2004.
[46] J. Shi, J. X. Chen, and Q. Xue, “A differential voltage-controlled integrated antenna oscillator based on double-sided parallel-strip line,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 10, pp. 2207–2212, Oct. 2008.
[47] I. Haroun, J. Wight, C. Plett, A. Fathy, and D.-C. Chang, “Experimental analysis of a 60 GHz compact EC-CPW branch-line coupler for mm-wave CMOS radios,” IEEE Microw. Wireless Compon. Lett.,vol. 20, no. 4, pp. 211–213, Apr. 2010.
[48] C.-Y. Kuo, A. Y.-K. Chen, C.-M. Lee, and C.-H. Luo, “Miniature 60 GHz slow-wave CPW branch-line coupler using 90 nm digital CMOS process,” Electron. Lett., vol. 47, no. 16, pp. 924–925, Aug. 2011.
[49] J.-D. Jin and S. S. H. Hsu, “A 0.18- m CMOS balanced amplifier for 24-GHz applications,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp.440–445, Feb. 2008.
[50] T.-N. Kuo, Y.-S. Lin, C.-H.Wang, and C. H. Chen, “A compact LTCC branch-line coupler using modified-T equivalent-circuit model for transmission line,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 2, pp. 90–92, Feb. 2006.
[51] Haroun, C. plett, C. Hsu, C. Cheng, “Compact 60-GHz IPD- Based Branch-Line Coupler for System-on-Package V-Band Radios,” IEEE Tran. Comp. Pack. Manu. Tech., Vol. 2, Iss. 1, pp. 1070-1074.
[52] A. Bisognin, D. Titz, F. Ferrero, C. Luxey, G. Jacquemod, P. Brachat, C. Laporte, H. Ezzeddine, R. Pilard, F. Gianesello, and D. Gloria, “IPD technology for passive circuits and antennas at millimeter-wave frequencies,” in Proc. EuCAP, Goteborg, Sweden, Apr. 2013, pp. 326–329.
[53] Y.-C. Tseng and T.-G. Ma, “On-chip X-band branch-line coupler using glass integrated passive device technology,” Electron. Lett., vol. 48, no. 25, pp. 1605 - 1606, Dec. 2012.
[54] Y.-S. Lin and J.-H. Lee, “Miniature Butler Matrix Design Using Glass-Based Thin-Film Integrated Passive Device Technology for 2.5-GHz Applications,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2594 - 2602, Jul. 2013.
[55] S. Wang and C.-K. C. Tzuang, “Compacted Ka-band CMOS rat-race hybrid using synthesized transmission lines,” in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 1023–1026.
[56] M.-J. Chiang, H.-S. Wu, and C.-K. C. Tzuang, “Design of Synthetic Quasi-TEM Transmission Line for CMOS Compact Integrated Circuit,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2512 - 2520, Dec. 2007.
[57] H. J. Wei, C. C. Meng, and S. W. Yu, “A Chebyshev-response stepimpedance phase-inverter rat-race coupler directly on lossy silicon substrate and its Gilbert mixer application,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 4, pp. 882–893, Apr. 2011.
[58] C. H. Tseng, “Compact LTCC rat-race couplers using multilayered phase-delay and phase-advance T-equivalent sections,” IEEE Trans. Adv. Packag., vol. 33, no. 2, pp. 543–551, May 2010.
[59] V. Napijalo and B. Kearns, “Multilayer 180 coupled line hybrid coupler,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2525–2535, Nov. 2008.
[60] V. Napijalo, “Coupled line 180 hybrids with Lange couplers,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 12, pp. 3674–3682, Dec. 2012.
[61] I. Haroun, Y.-C. Hsu, and D.-C. Chang, “60 GHz rat-race coupler using LG- CPW transmission lines in IPD technology,” IEEE Asia Pacific Metrology Programme (APMP), pp. 284-287, Oct. 2011
[62] C.-C. Chen, J.-J. Cin, S.-H. Wang, C.-C. Lin, and C.-K. C. Tzuang, “A novel miniaturized wideband Wilkinson power divider employing two-dimensional transmission line,” IEEE Int. VLSI Design, Auto., Test Symp., pp. 212–215, Apr. 2008.
[63] M. Ercoli, D. Dragomirescu, and R. Plana, “Small Size High Isolation Wilkinson Power Splitter for 60 GHz Wireless Sensor Network Applications.” IEEE Silicon Monolithic Integrated Circuit in RF system (SiRF), pp. 85-88, Jan. 2011.
[64] Y.-J. Li, M.-J. Xing, Z.-M. Zhu, and Y.-T. Yang, “Novel Compact Compass Navigation System (CNS) Power Divider,” IEEE Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), pp. 710-713, Aug. 2010
[65] M.-Q Liu, X.B. Wei, P. Wang, and W. Wei, “Compact LTCC Multilayer Broadband Power Divider,” IEEE Int. Conf. on Computational Problem-Solving (ICCP), pp. 370-372 , Oct. 2010.
[66] L.-Z. Zhu, X.-B. Wei, P. Wang, S. Ma, Z.-Y. Zeng, and B.-C. Yang, “Compact LTCC module for WLAN RF front-end,” IEEE Int. Conf. on Computational Problem-Solving (ICCP), pp. 387-389, Oct. 2011.
[67] I. Haroun, T.-Y. Lin, D.-C. Chang, and C. Plett, “A reduced-size, low-loss 57–86 GHz IPD-based power divider using loaded modified CPW transmission lines,” IEEE Asia-Pacific Micro. Conf. (APMC), pp. 1202-1204, Dec. 2012.
[68] H.-T. Kim, K. Liu, R. C. Frye, Y.-T. Lee, G. Kim, and B. Ahn, “Design of Compact Power Divider Using Integrated Passive Device (IPD) Technology,” IEEE Electronic Components and Technology Conference (ECTC), pp. 1894-1899, May 2009.
[69] W. R. Eisenstadt, B. Stengel, B. M. Thompson, Microwave differential circuit design using mixed-mode S-parameters,3rd ed. Artech house, 2006.

無法下載圖示 全文公開日期 2019/07/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE