簡易檢索 / 詳目顯示

研究生: 吳宗昀
Tsung-Yun Wu
論文名稱: 胺基及羧酸基改質普朗尼克高分子增加鼻遞藥物傳送至腦之應用
Amine and carboxylic acid modified end of Pluronic for enhancing nasal drug deliver to brain
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 蔡協致
Hsieh-Chih Tsai
鄭如忠
Ru-Jong Jeng
何明樺
Ming-Hua Ho
陳玉暄
Yu-Shuan Chen
林宣因
Shuian-Yin Lin
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 98
中文關鍵詞: 多形性膠質母細胞瘤鼻腔傳遞正丁烯基苯感溫型高分子普朗尼克F127
外文關鍵詞: Glioblastoma multiforme, Nasal delivery, Butylidenephthalide, Thermo-sensitive polymer, Pluronic F127
相關次數: 點閱:249下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

多形性膠質母細胞瘤(Glioblastoma multiforme, GBM)是大腦常見之惡性腫瘤,此原發性腦腫瘤若僅使用手術,中期存活僅有3-4個月,手術後,標準給藥包括腦內貼片(Gliadel wafer)與口服(Temozolomide)。除此之外,雖有抗血管新生因子的靜脈藥物傳輸方式,但仍無法有效穿透腦血腦屏障(Blood-brain barrier, BBB)來給予腦癌治療,然而這些策略仍有不足,無法提升整體病患的存活期,且病人術後副作用多,如噁心、身體不適和腦膜炎等。正丁烯基苯(n-Butylidenephehalide, Bdph)已被證實可毒殺腫瘤,且對正常細胞毒性低,目前已用在臨床二期試驗,然而目前給藥策略主要是顱內給藥,仍需想出術後的輔助療法,以避免二次開腦的不便議題是給藥策略須改善的課題。因此跨血腦屏障方法對於腫瘤和腫瘤微環境的治療至關重要。鼻遞給藥是繞過血腦屏障的選擇之一,因鼻遞有更高的生物利用度,減少藥物全身不良反應和降低給藥劑量。本實驗設計鼻滴水膠來黏附在鼻膜上,將帶有微脂體包覆的正丁烯基苯保留在鼻腔中,減少其流失到腸胃道,並延長藥物在鼻腔滯留時間。
本研究選用感溫高分子Pluronic F127並利用化學性質來進行尾端基改質,再分別採用了1H NMR、FTIR和EA鑑定。確認其尾端基成功接枝功能性官能基後,測定其臨界微胞濃度。結果證實改質後高分子臨界微胞濃度數值均降低,使奈米微胞在體液中穩定性越好。改質後尾端基可以改善Pluronic F127容易被體液滲入而被清除的缺點,流變測試證明了改質後高分子增強了黏度從1400 Pa.s提升到1700 Pa.s以上,且其成膠溫度從33 ℃下降到24 ℃,更與臨界微胞濃度相互呼應,意味著改質後的水膠更可以有效地增加鼻腔留滯量。
動物鼻遞實驗也證明了水膠能黏附在鼻腔中,而尾端羧酸基高分子更能穿透鼻腔上皮系統來到腦部,因此改質後Pluronic F127能達成有效且非侵入式的藥物傳遞於腦癌治療。


Glioblastoma multiforme (GBM) presented as one of the most lethal malignancy and the most common adult malignant primary brain tumor. The median survival time for someone with GBM treated with surgical is around 3-4 months. After major surgical resection, the following-up traditional treatments such as implantable Gliadel wafer or oral Temozolomide drug may slightly increase the median survival time for patients. However, there are still existed some drawbacks in these treatments. For example, the low bioavailability of oral drugs and implantable drug requiring second surgery procedures. In addition, intravenous injection with anti-VEGF antibody provide the second way to treat the GBM patients, but they still exist some limitation. The high dose of intravenous injection brings the major side effect to patients. And moreover, tradition oral and intravenous drug delivery in GBM treatments methods are not the efficient way to achieve the blood-brain barrier (BBB) much less penetrate the BBB. Bdph, developed from TZU hospital, has been applied to clinical trial phase II. The advantages of Bdph are safe and shown therapeutic efficiency for patients. However, the brain surgery is required for that current clinical used wafer type bdph drug applied to patients. To cross blood-brain barrier method and low invasive administration route are also critical for reaching efficiently therapeutic effect to the brain tumor and tumor microenvironment. Intranasal drug delivery is one of the promising candidate’s route to bypass the blood-brain barrier. Moreover, the nasal delivery usually has higher bioavailability, reducing systemic adverse drug effects and lowering the dosage. This work designs the mucoadhesive hydrogel to adhere on the nasal mucous membrane that can increase the retention time of anti-brain cancer drug, Bdph, loaded liposome in the nasal cavity and reduce unnecessary loss of drug to the gastrointestinal tract. We consider to modified the terminal end of thermal sensitive Pluronic F127 to change its physical and chemical properties. The modified terminal end has possibility to increase the hydrogen bonding between the Pluronic micelles at body temperature and solve the dissolution problem of pristine Pluronic. The FT-IR, NMR, and EA were used to characterize the function grafting content and efficiency. The CMC value in the hydrogel with terminal modification was less than that of naïve hydrogel group. The rheological test showed that the modified polymer enhances the viscosity of thermal sensitive gel from 1400 Pa.s to 1700 Pa.s at body temperature and also change the gelation temperature from 33 ℃ decrease to 24 ℃. The animal nasal delivery experiment also demonstrates that the hydrogel can adhere to the nasal cavity, furthermore, the terminal carboxylate polymer even can penetrate the nasal epithelium layer to the brain. Consequently, modified Pluronic F127 achieves the efficiency, and non-invasive approach to deliver the drug and treatment.

致謝 I 摘要 II Abstract III 目錄 V 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 研究動機與目的 1 第二章 文獻回顧 3 2.1 刺激響應高分子 3 2.2 感溫型高分子 4 2.2.1 三嵌段PEO PPO共聚物(Triblock PEO PPO copolymer) 5 2.2.2 二/三嵌段聚乙二醇聚酯共聚物(Di/tri block PEG polyester copolymer) 6 2.2.3 二/三嵌段聚乙二醇肽共聚物(Di/tri block PEG peptide copolymer) 6 2.3 水膠介紹與應用 7 2.3.1 水膠合成方法 8 2.3.2 Pluronic F127性質 8 2.3.3 尾端基改質β-丙氨酸(β-Alanine)和乙二胺(Ethylenediamine) 9 2.3.4 藥物傳遞系統 9 2.4 藥物包覆應用於多形性膠質母細胞瘤 9 2.4.1 多形性膠質母細胞瘤 10 2.4.2 GBM轉移 10 2.4.3 GBM臨床用藥和給藥方法 12 2.4.4 當歸萃取物正丁烯基苯簡介與特性 13 2.4.5 藥物載體微脂體簡介與包覆Bdph 13 2.5 藥物經鼻遞傳送顱內治療 14 2.5.1 鼻腔內部結構 14 2.5.2 中樞神經系統屏障 15 2.5.3 腦血管屏障(Blood-brain barrier, BBB) 16 2.5.4 鼻遞給藥系統 17 第三章 實驗合成方法 18 3.1 實驗藥品 18 3.2 實驗儀器 22 3.3 實驗合成與製備 27 3.4 實驗合成架構 29 3.5 無水THF的製備 29 3.5.1 前處理準備 29 3.5.2 還原劑鈉製備 30 3.5.3 THF出料 30 3.5.4 廢棄物處理 30 3.6 合成ADF127和EDF127 31 3.6.1 Pluronic F127與DSC/DMAP中間產物製備 31 3.6.2 合成尾端胺基高分子(EDF127) 31 3.6.3 合成尾端羧酸基高分子(ADF127) 31 3.6.4 透析和凍乾 32 3.7 樣品結構鑑定與分析 32 3.7.1 氫譜核磁共振 32 3.7.2 傅立葉轉換紅外線光譜 32 3.7.3 NCHS元素分析 33 3.7.4 材料臨界微胞濃度 33 3.7.5 水膠溶膠凝膠轉換 33 3.7.6 Liposome-Bdph藥物濃度檢量線 34 3.7.7 穿透式電子顯微鏡藥物包覆製備 34 3.7.8 奈米微胞粒徑動態與界面電位試驗 34 3.7.9 原子力顯微鏡奈米材料製備 35 3.7.10 場發射式掃描電子顯微鏡水膠包覆liposome製備 35 3.7.11 水膠包覆Bdph-liposome藥物釋放體外模擬 36 3.7.12 材料流變測試 36 3.8 細胞生物性試驗 37 3.8.1 細胞培養條件 37 3.8.2 水膠材料細胞毒性試驗 37 3.8.3 藥物Bdph-Liposome細胞存活試驗 38 3.8.4 動物鼻滴試驗 38 第四章 結果與討論 40 4.1 氫譜核磁共振 40 4.2 傅立葉轉換紅外線光譜 44 4.3 NCHS元素分析測試 46 4.4 臨界微胞濃度 47 4.5 水膠溶膠凝膠轉換 49 4.6 Liposome-Bdph藥物濃度檢量線 50 4.7 穿透式電子顯微鏡藥物包覆製備 51 4.8 奈米微胞粒徑動態與界面電位試驗 52 4.9 原子力顯微鏡奈米微胞 54 4.10 場發射式掃描電子顯微鏡水膠包覆liposome 56 4.11 水膠包覆liposome-Bdph藥物釋放體外模擬 57 4.12 材料流變測試 58 4.13 水膠材料細胞毒性試驗 67 4.14 藥物Bdph-Liposome細胞存活試驗 68 4.15 動物鼻滴實驗 69 第五章 結論 72 參考文獻 73

1. Tykocki, T. and M. Eltayeb, Ten-year survival in glioblastoma. A systematic review. Journal of Clinical Neuroscience, 2018. 54: p. 7-13.
2. Tanner, G.N., Investigating intratumour heterogeneity analysis methods and their application in GBM. 2020, University of Leeds.
3. Gittleman, H., et al., Survivorship in adults with malignant brain and other central nervous system tumor from 2000–2014. Neuro-oncology, 2018. 20(suppl_7): p. vii6-vii16.
4. Ozdemir-Kaynak, E., A.A. Qutub, and O. Yesil-Celiktas, Advances in glioblastoma multiforme treatment: new models for nanoparticle therapy. Frontiers in physiology, 2018. 9: p. 170.
5. Pasqualetti, F., et al., Single-agent bevacizumab in recurrent glioblastoma after second-line chemotherapy with fotemustine: The experience of the italian Association of Neuro-Oncology. American journal of clinical oncology, 2018. 41(12): p. 1272-1275.
6. Wick, W., et al., Lomustine and bevacizumab in progressive glioblastoma. New England Journal of Medicine, 2017. 377(20): p. 1954-1963.
7. Song, J., et al., Effectiveness of lomustine and bevacizumab in progressive glioblastoma: A meta-analysis. OncoTargets and therapy, 2018. 11: p. 3435.
8. Zarrintaj, P., et al., Poloxamer-based stimuli-responsive biomaterials. Materials Today: Proceedings, 2018. 5(7): p. 15516-15523.
9. Abbott, N.J., L. Rönnbäck, and E. Hansson, Astrocyte–endothelial interactions at the blood–brain barrier. Nature reviews neuroscience, 2006. 7(1): p. 41-53.
10. Dufes, C., et al., Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats. International journal of pharmaceutics, 2003. 255(1-2): p. 87-97.
11. Sun, X., et al., Hydrogel-Based Sensor Networks: Compositions, Properties, and Applications-A Review. ACS Appl Bio Mater, 2021. 4(1): p. 140-162.
12. Zarrintaj, P., et al., Thermo-sensitive polymers in medicine: A review. European Polymer Journal, 2019. 117: p. 402-423.
13. Gandhi, A., et al., Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications. Asian Journal of Pharmaceutical Sciences, 2015. 10(2): p. 99-107.
14. Gibson, M.I. and R.K. O'Reilly, <Gibson-2013-To-aggregate-or-not-to-aggregate-co.pdf>. 2013.
15. Lemanowicz, M., Thermosensitive aggregation under conditions of repeated heating–cooling cycles. International Journal of Mineral Processing, 2015. 144: p. 26-32.
16. Casado, N., et al., Current trends in redox polymers for energy and medicine. Progress in Polymer Science, 2016. 52: p. 107-135.
17. Priya James, H., et al., Smart polymers for the controlled delivery of drugs - a concise overview. Acta Pharm Sin B, 2014. 4(2): p. 120-7.
18. Pena-Francesch, A., L. Montero, and S. Borros, Tailoring the LCST of thermosensitive hydrogel thin films deposited by iCVD. Langmuir, 2014. 30(24): p. 7162-7.
19. Tanase, M.A., et al., Mixed Pluronic-Cremophor Polymeric Micelles as Nanocarriers for Poorly Soluble Antibiotics-The Influence on the Antibacterial Activity. Pharmaceutics, 2021. 13(4).
20. Chou, H.Y., et al., Design of an Interpenetrating Polymeric Network Hydrogel Made of Calcium-Alginate from a Thermos-Sensitive Pluronic Template as a Thermal-Ionic Reversible Wound Dressing. Polymers (Basel), 2020. 12(9).
21. Pitto-Barry, A. and N.P.E. Barry, Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances. Polym. Chem., 2014. 5(10): p. 3291-3297.
22. Darge, H.F., et al., Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications. Int J Biol Macromol, 2019. 133: p. 545-563.
23. Andrgie, A.T., et al., Ibuprofen-Loaded Heparin Modified Thermosensitive Hydrogel for Inhibiting Excessive Inflammation and Promoting Wound Healing. Polymers (Basel), 2020. 12(11).
24. Chiang, P.R., et al., Thermosensitive hydrogel from oligopeptide-containing amphiphilic block copolymer: effect of peptide functional group on self-assembly and gelation behavior. Langmuir, 2013. 29(51): p. 15981-91.
25. Varaprasad, K., et al., A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C Mater Biol Appl, 2017. 79: p. 958-971.
26. Ma, S., et al., Structural hydrogels. Polymer, 2016. 98: p. 516-535.
27. Saravanan, S., et al., A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration. Int J Biol Macromol, 2019. 121: p. 38-54.
28. Qu, C., et al., A thermosensitive RGD-modified hydroxybutyl chitosan hydrogel as a 3D scaffold for BMSCs culture on keloid treatment. Int J Biol Macromol, 2019. 125: p. 78-86.
29. Pontremoli, C., et al., Hybrid injectable platforms for the in situ delivery of therapeutic ions from mesoporous glasses. Chemical Engineering Journal, 2018. 340: p. 103-113.
30. Andrgie, A.T., et al., Non-Anticoagulant Heparin Prodrug Loaded Biodegradable and Injectable Thermoresponsive Hydrogels for Enhanced Anti-Metastasis Therapy. Macromol Biosci, 2019. 19(5): p. e1800409.
31. Thakur, S., V.K. Thakur, and O.A. Arotiba, History, Classification, Properties and Application of Hydrogels: An Overview, in Hydrogels. 2018. p. 29-50.
32. Chauhan, A., P. Chauhan, and B. Kaith, Natural fiber reinforced composite: A concise review article. Journal of Chemical Engineering and Process Technology, 2012. 3(2): p. 10001323.
33. Bae, C.-J., et al., Ceramic Stereolithography: Additive Manufacturing for 3D Complex Ceramic Structures. Journal of the Korean Ceramic Society, 2017. 54(6): p. 470-477.
34. Bohorquez, M., et al., A study of the temperature-dependent micellization of pluronic F127. Journal of colloid and interface science, 1999. 216(1): p. 34-40.
35. Shirwaiker, R.A., M.F. Purser, and R.A. Wysk, Scaffolding hydrogels for rapid prototyping based tissue engineering, in Rapid Prototyping of Biomaterials. 2014. p. 176-200.
36. Lavik, E.B., B.D. Kuppermann, and M.S. Humayun, Drug Delivery, in Retina. 2013. p. 734-745.
37. Mansuri, S., et al., Mucoadhesion: A promising approach in drug delivery system. Reactive and Functional Polymers, 2016. 100: p. 151-172.
38. Bailey, P. and H. Cushing, A classification of the tumors of the glioma group on a histogenetic basis with a correlated study of prognosis. 1926: Lippincott.
39. Marenco-Hillembrand, L., et al., Trends in glioblastoma: outcomes over time and type of intervention: a systematic evidence based analysis. Journal of neuro-oncology, 2020. 147(2): p. 297-307.
40. Brat, D.J., et al., cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta neuropathologica, 2018. 136(5): p. 805-810.
41. Velázquez Vega, J.E. and D.J. Brat, Incorporating advances in molecular pathology into brain tumor diagnostics. Advances in Anatomic Pathology, 2018. 25(3): p. 143-171.
42. Louis, D.N., et al., The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta neuropathologica, 2016. 131(6): p. 803-820.
43. Welch, D.R. and D.R. Hurst, Defining the hallmarks of metastasis. Cancer research, 2019. 79(12): p. 3011-3027.
44. Lah, T.T., M. Novak, and B. Breznik. Brain malignancies: Glioblastoma and brain metastases. in Seminars in cancer biology. 2020. Elsevier.
45. Winkler, F., The brain metastatic niche. Journal of Molecular Medicine, 2015. 93(11): p. 1213-1220.
46. Steeg, P.S., K.A. Camphausen, and Q.R. Smith, Brain metastases as preventive and therapeutic targets. Nature Reviews Cancer, 2011. 11(5): p. 352-363.
47. Lewis, G.D., et al., GBM skin metastasis: a case report and review of the literature. CNS oncology, 2017. 6(3): p. 203-209.
48. Bissell, M.J., Tumor plasticity allows vasculogenic mimicry, a novel form of angiogenic switch: a rose by any other name? The American journal of pathology, 1999. 155(3): p. 675.
49. Lehtinen, M.K., et al., The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron, 2011. 69(5): p. 893-905.
50. Müller, C., et al., Hematogenous dissemination of glioblastoma multiforme. Science translational medicine, 2014. 6(247): p. 247ra101-247ra101.
51. Friedman, H.S., T. Kerby, and H. Calvert, Temozolomide and treatment of malignant glioma. Clinical cancer research, 2000. 6(7): p. 2585-2597.
52. Stevens, M.F., et al., Antitumor activity and pharmacokinetics in mice of 8-carbamoyl-3-methyl-imidazo [5, 1-d]-1, 2, 3, 5-tetrazin-4 (3H)-one (CCRG 81045; M & B 39831), a novel drug with potential as an alternative to dacarbazine. Cancer research, 1987. 47(22): p. 5846-5852.
53. Friedman, H.S., et al., Activity of temozolomide in the treatment of central nervous system tumor xenografts. Cancer research, 1995. 55(13): p. 2853-2857.
54. Jihong Zhang, M.F.G.S., Traccy D. Bradshaw, <Temozolomide mechanisms of action, repair and resistance.pdf>. 2012.
55. Westphal, M., et al., Gliadel® wafer in initial surgery for malignant glioma: long-term follow-up of a multicenter controlled trial. Acta neurochirurgica, 2006. 148(3): p. 269-275.
56. Valtonen, S., et al., Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study. Neurosurgery, 1997. 41(1): p. 44-49.
57. Bregy, A., et al., The role of Gliadel wafers in the treatment of high-grade gliomas. Expert Rev Anticancer Ther, 2013. 13(12): p. 1453-61.
58. Folkman, J., Tumor angiogenesis: therapeutic implications. New england journal of medicine, 1971. 285(21): p. 1182-1186.
59. Ahluwalia, M.S. and C.L. Gladson, Progress on antiangiogenic therapy for patients with malignant glioma. J Oncol, 2010. 2010: p. 689018.
60. Gil-Gil, M.J., et al., Bevacizumab for the treatment of glioblastoma. Clin Med Insights Oncol, 2013. 7: p. 123-35.
61. Tsai, N.M., et al., The natural compound n-butylidenephthalide derived from Angelica sinensis inhibits malignant brain tumor growth in vitro and in vivo. J Neurochem, 2006. 99(4): p. 1251-62.
62. Lin, P.C., et al., Orphan nuclear receptor, Nurr-77 was a possible target gene of butylidenephthalide chemotherapy on glioblastoma multiform brain tumor. J Neurochem, 2008. 106(3): p. 1017-26.
63. Lin, E.Y., et al., Liposome Consolidated with Cyclodextrin Provides Prolonged Drug Retention Resulting in Increased Drug Bioavailability in Brain. Int J Mol Sci, 2020. 21(12).
64. Akbarzadeh, A., et al., Liposome: classification, preparation, and applications. Nanoscale research letters, 2013. 8(1): p. 1-9.
65. Beck, Z., G.R. Matyas, and C.R. Alving, Detection of liposomal cholesterol and monophosphoryl lipid A by QS-21 saponin and Limulus polyphemus amebocyte lysate. Biochim Biophys Acta, 2015. 1848(3): p. 775-80.
66. Ashby, L.S., K.A. Smith, and B. Stea, Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: a systematic literature review. World J Surg Oncol, 2016. 14(1): p. 225.
67. Mygind, N. and R. Dahl, Anatomy, physiology and function of the nasal cavities in health and disease. Advanced drug delivery reviews, 1998. 29(1-2): p. 3-12.
68. Proctor, D.F., I. Andersen, and G. Lundqvist, Clearance of inhaled particles from the human nose. Archives of Internal Medicine, 1973. 131(1): p. 132-139.
69. Chein, Y., Nasal systemic drug delivery. Drugs and the pharmaceutical sciences, 1989. 39: p. 1-19.
70. Mistry, A., S. Stolnik, and L. Illum, Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm, 2009. 379(1): p. 146-57.
71. Talegaonkar, S. and P. Mishra, Intranasal delivery: An approach to bypass the blood brain barrier. Indian journal of pharmacology, 2004. 36(3): p. 140.
72. Lorena Sulz, J.B., <Role-of-nitric-oxide-during-neuroge.pdf>. 2006.
73. Abbott, N.J., L. Ronnback, and E. Hansson, Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci, 2006. 7(1): p. 41-53.
74. Nag, S., Blood brain barrier, exchange of metabolites and gases, in Pathology and genetics: cerebrovascular diseases. 2005, ISN Neuropath Press. p. 22-29.
75. Brown, P.D., et al., Molecular mechanisms of cerebrospinal fluid production. Neuroscience, 2004. 129(4): p. 957-70.
76. Abbott, N.J., Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int, 2004. 45(4): p. 545-52.
77. Dolman, D., et al., Induction of aquaporin 1 but not aquaporin 4 messenger RNA in rat primary brain microvessel endothelial cells in culture. J Neurochem, 2005. 93(4): p. 825-33.
78. Abbott, N.J., et al., Structure and function of the blood-brain barrier. Neurobiol Dis, 2010. 37(1): p. 13-25.
79. Engelhardt, B., Development of the blood-brain barrier. Cell Tissue Res, 2003. 314(1): p. 119-29.
80. Wolburg, H. and A. Lippoldt, Tight junctions of the blood–brain barrier: development, composition and regulation. Vascular pharmacology, 2002. 38(6): p. 323-337.
81. Hawkins, B.T. and T.P. Davis, The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev, 2005. 57(2): p. 173-85.
82. Cserr, H.F. and M. Bundgaard, Blood-brain interfaces in vertebrates: a comparative approach. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 1984. 246(3): p. R277-R288.
83. Hawkins, R.A., D.R. Peterson, and J.R. Viña, The complementary membranes forming the blood‐brain barrier. IUBMB life, 2002. 54(3): p. 101-107.
84. Minn, A., et al., Drug transport into the mammalian brain: the nasal pathway and its specific metabolic barrier. J Drug Target, 2002. 10(4): p. 285-96.
85. Thorne, R.G., et al., Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain research, 1995. 692(1-2): p. 278-282.
86. Graff, C.L. and G.M. Pollack, Nasal drug administration: potential for targeted central nervous system delivery. J Pharm Sci, 2005. 94(6): p. 1187-95.
87. Abraham, R.J., J. Fisher, and P. Loftus, Introduction to NMR spectroscopy. Vol. 2. 1998: Wiley New York.
88. Berthomieu, C. and R. Hienerwadel, Fourier transform infrared (FTIR) spectroscopy. Photosynthesis research, 2009. 101(2): p. 157-170.
89. Niko, Y., et al., Fundamental photoluminescence properties of pyrene carbonyl compounds through absolute fluorescence quantum yield measurement and density functional theory. Tetrahedron, 2012. 68(31): p. 6177-6185.
90. P.J. Cullen, C.P.O.d., M. Houska, Rotational rheometry using complex geometries a review.pdf>. 2002.
91. Lim, E., K.D. Modi, and J. Kim, In vivo bioluminescent imaging of mammary tumors using IVIS spectrum. J Vis Exp, 2009(26).
92. Xu, S., et al., The DMAP‐Catalyzed Acetylation of Alcohols—A Mechanistic Study (DMAP= 4‐(Dimethylamino) pyridine). Chemistry–A European Journal, 2005. 11(16): p. 4751-4757.
93. Swar, S., V. Máková, and I. Stibor, The Covalent Tethering of Poly (ethylene glycol) to Nylon 6 Surface via N, N′-Disuccinimidyl Carbonate Conjugation: A New Approach in the Fight against Pathogenic Bacteria. Polymers, 2020. 12(10): p. 2181.
94. Verma, S.K., et al., Solvent free, N, N′-carbonyldiimidazole (CDI) mediated amidation. Tetrahedron letters, 2012. 53(19): p. 2373-2376.
95. Al Harthi, S., et al., Nasal delivery of donepezil HCl-loaded hydrogels for the treatment of Alzheimer's disease. Sci Rep, 2019. 9(1): p. 9563.
96. Bharti, S.K. and R. Roy, Quantitative 1H NMR spectroscopy. TrAC Trends in Analytical Chemistry, 2012. 35: p. 5-26.
97. Pauli, G.F., et al., Quantitative 1H NMR. Development and potential of an analytical method: an update. Journal of natural products, 2012. 75(4): p. 834-851.
98. Brateman, L., Chemical shift imaging: a review. American Journal of Roentgenology, 1986. 146(5): p. 971-980.
99. Holzgrabe, U., Quantitative NMR spectroscopy in pharmaceutical applications. Progress in Nuclear Magnetic Resonance Spectroscopy, 2010. 57(2): p. 229-240.
100. Malz, F. and H. Jancke, Validation of quantitative NMR. Journal of pharmaceutical and biomedical analysis, 2005. 38(5): p. 813-823.
101. Izunobi, J.U. and C.L. Higginbotham, Polymer molecular weight analysis by 1H NMR spectroscopy. Journal of Chemical Education, 2011. 88(8): p. 1098-1104.
102. Colthup, N., Introduction to infrared and Raman spectroscopy. 2012: Elsevier.
103. Larkin, P., Infrared and Raman spectroscopy: principles and spectral interpretation. 2017: Elsevier.
104. Cotton, F.A., Chemical applications of group theory. 1991: John Wiley & Sons.
105. Kocen, R., et al., Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load. Biomed Mater, 2017. 12(2): p. 025004.
106. Ahearne, M., et al., Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J R Soc Interface, 2005. 2(5): p. 455-63.
107. Chandran, N., S. C, and S. Thomas, Introduction to rheology, in Rheology of Polymer Blends and Nanocomposites. 2020. p. 1-17.
108. Zuidema, J.M., et al., A protocol for rheological characterization of hydrogels for tissue engineering strategies. J Biomed Mater Res B Appl Biomater, 2014. 102(5): p. 1063-73.
109. Bassi da Silva, J., et al., Assessing Mucoadhesion in Polymer Gels: The Effect of Method Type and Instrument Variables. Polymers (Basel), 2018. 10(3).

無法下載圖示 全文公開日期 2032/09/01 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2102/09/01 (國家圖書館:臺灣博碩士論文系統)
QR CODE