簡易檢索 / 詳目顯示

研究生: KINJAL JAINIKKUMAR SHAH
KINJAL - JAINIKKUMAR SHAH
論文名稱: Applicability of Organoclays Towards Wettability and Gas Adsorption
Applicability of Organoclays Towards Wettability and Gas Adsorption
指導教授: 今榮東洋子
TOYOKO IMAE
口試委員: 李振綱
Cheng-Kang Lee
李玉郎
Yuh-Lang Lee 
廖英志
Ying-Chih Liao
氏原真樹
Masaki Ujihara
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 206
中文關鍵詞: 潤濕性QAS樹枝狀有機粘土氣體吸附動力學朗繆爾單層
外文關鍵詞: Wettability, QAS, Dendrimer, Organoclays, Gas adsorption, Langmuir monolayer.
相關次數: 點閱:176下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

中文摘要

本研究為將離子交換型黏土修飾於胺鹽界面活性劑及樹枝狀高分子及其於可濕性與氣體吸附上之應用。相較於線性胺鹽界面活性劑,含苯基之胺鹽界面活性劑呈現較為疏水性,此類疏水性改質後的黏土常來增進不飽和聚酯樹酯之機械強度,所有的有有機修飾黏土,僅需要混入重量百分率3%就能提高複合材料4倍拉伸強度、2.5倍拉伸模數及3倍彎曲模數。
由於全球暖化問題,減少溫室氣體產生,甚至開發新材料對於溫室氣體捕抓為目前最重要的議題,因此本研究設計一離子交換粘土修飾樹枝狀高分子探討二氧化碳之吸附效率,本研究發現最佳化之黏土混入樹枝狀高分子是在酸性環境下,樹枝狀高分子中的黏土含量會依照黏土種類不同而改變,合成鋰皂石(laponite) >水滑石(hydrotalcite) > 雲母(sericite),此差異主要來自於黏土之表面積,而二氧化碳氣體吸附能力之順序為,合成鋰皂石(laponite) > 雲母(sericite) >水滑石(hydrotalcite),對於氨氣吸附能力為,水滑石(hydrotalcite) > 雲母(sericite) 合成鋰皂石(laponite) >。此結果差異主要來於樹枝狀表面官能基,本研究選用表面結構具胺基之樹枝狀高分子增加了二氧化碳吸附力,且增加樹枝狀高分子含量也有助於二氧化碳之吸附,另一方面,為了增加二氧化碳吸復能力亦可藉由導入四甲基哌啶之氧化活性基於奈米纖維素薄膜。此外,已吸附氣體之脫附可藉由通入氮氣來達成,不論氨氣或二氧化碳皆可成功脫附自奈米纖維素薄膜,且經由氣體動力學分析此氣體吸附於此複合材料是依Langmuir單層吸附方式,


The ion-exchange clays have been modified by ion exchange Quaternary Ammonium Surfactant (QAS) and poly(amido amine) dendrimers (PAMAM) moieties to enhance wettability and gas adsorption properties, respectively. Cation-exchange clay such as montmorillonite have been modified by QASs modifier with different alkyl chain lengths and a benzyl substitute group for enhancement of hydrophobicity and wettability. The modified organo clays have been characterized by different analytical techniques. The loading of QASs was in the range of 0.60-0.75 mmol/g per clay, irrespective of the type of QAS used for the modification of the clays. Moreover, the presence of benzyl groups on the clay prevents water from penetrating into the interlayer spacing, which yields the hydrophobic surface. These behaviors can arise from the molecular arrangement of QAS on clay, but not be attributable to the amount of QASs, and the surface area, size, and zeta potential of particles. Such high hydrophobic clays have been dispersed in Unsaturated Polyester (UPE) resin for the enhancement of mechanical properties of nano composite. Among all the organo clays dispersed in UPE resin nano composite, 3% W/W montmorillonite clay modified by QASs having a chain length of C-18 with benzyl substitution enhanced tensile strength 4 times, tensile modulus 2.5 times, and flexural modulus 3 times compared to a polymer block without clay additives.

For gas adsorption properties of clays, ion-exchange clays have been modified by
ion-exchange dendrimers. During modification, loading of dendrimers have been obtained in the ordered of a BET surface area of clays, such as laponite> hydrotalcite> sericite, irrespective of the types of clays. Loading and distribution of the dendrimers are characterized by different analytical techniques. The capability of CO2 gas adsorption on pristine clays is the same order as the dendrimer loading. However, the capability of NH3 gas adsorption on pristine clays is in the order of hydrotalcite > sericite > laponite. This is due to difference in affinity of gas molecules with different clays. The CO2 gas adsorption with dendrimer loading increased on laponite and sericite organoclays but decreased on hydrotalcite organoclays. The same, but opposite behavior has been obtained with NH3 gas adsorption. Moreover, the gas adsorption amount remains higher at room temperature adsorption with compare to higher temperature. Moreover, gas adsorption on organoclays increases with increasing the loading of respective dendrimers. While gas molecules adsorbed on pristine clays are desorbed mostly, but some gas molecules on organoclays remain after desorption procedure. This indicates that CO2 molecules adsorb at the strong interaction with binding sites of dendrimer with NH2 terminated and NH3 molecules have strong interaction with COOH terminated dendrimers. Similar gas adsorptions have been performed on clay impregnated 2,2,6,6-tetramethylpiperidine- 1-oxyl radical (TEMPO) oxidized cellulose nanofiber (TOCNF) films. Loading and distribution of clays in TOCNF are characterized by different analytical techniques. The adsorption amount of gases is enhanced for clay-TOCNF films to compare with net clay materials. However, organo hydrotalcite clay increases both gas adsorptions with compare to laponite and sericite clay. This is due to the affinity of functionalized NH2 terminated PAMAM dendrimer towards COOH/COONa functionalized TOCNF increased and thus gas adsorption affinity decreased. Moreover, the time-course CO2 gas adsorption have been investigated on pristine clays and organoclays to find the binding sites of gas adsorption. Observed data of CO2 adsorption followed the Langmuir monolayer adsorption kinetics, when two adsorption sites of clays namely clay inter-layer and outer-layer of pristine clays and third adsorption sites of dendrimer moiety are taken in account for organoclays, respectively. However, third site is active with based on a terminal group of dendrimers. It can be mentioned that the amine-terminated dendrimer is a valuable solid adsorbent for CO2 gas; whereas carboxyl-terminated dendrimer is a valuable solid adsorbent for NH3 gas.

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . i Chinese Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . vi Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . ix Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . xxii 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 1 1.2 Greenhouse Gas (GHG) Emissions . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Effects of Global Warming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Effects of Emitted Gases on Human and Solutions . . . . . . . . . . 4 1.5 Research Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . 5 1.6 Approach and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.7 Thesis Outline and Organization . . . . . . . . . . . . . . . . . . . . . . . . 9 2 PREPARATION AND WETTABILITY OF QAS MODIFIED CLAYS 13 2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 13 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Experimental Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2 Instrumentation and techniques . . . . . . . . . . . . .. . . . . . . . . . 17 2.3.3 Purification of MMT clay . . . . . . . . . . . . . . . . . . .. . . . . . . . 18 2.3.4 Preparation of organo MMT . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.1 Characterization of QAS-modified organoclays . . . . . . . . . . . . . 19 2.4.2 Wettability and hydrophobicity of QAS modified organoclays . . 25 2.4.3 Arrangement of QASs on clays . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 35 3 QAS MODIFIED CLAYS LOADED UPE RESIN COMPOSITE 36 3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 36 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 37 3.3 Experimental Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.2 Synthesis of organoclays . . . . . . . . . . . . . . . . . . . . . .. . . . . . 40 3.3.3 Synthesis of nanocomposites . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.4 Instrumentation and techniques . . . . . . . . . . . . . . . . . . . . . . 41 3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 42 3.4.1 Characterization of QAS-modified organoclays . . . . . . . . . 42 3.4.2 Characterization of clay-polymer nano composites . . . . . . 46 3.4.3 Mechanical properties of clay nanocomposite . . . . . . . . . . . 47 3.4.4 Surface behavior through spectroscopy . . . . . . . . . . . . . . . . 52 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 ADSORPTION OF CO2 ON DENDRIMER MODIFIED CLAYS 58 4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 61 4.3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.2 Instrumentation and techniques . . . . . . . . . . . . . . . . . . . . . 61 4.3.3 Preparation of organoclays . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.3.4 Procedures of adsorption and desorption . . . . . . . . . . . . . . 63 4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.4.1 Characterization of dendrimer-loaded organoclays . . . . . . 63 4.4.2 CO2 adsorption and desorption . . . . . . . . . . . . . . . . . . . . . .73 4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5 NH3 STORAGE ON DENDRIMER MODIFIED CLAYS 83 5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.3 Experimental Section . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 85 5.3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.3.2 Preparation of organoclays . . . . . . . . . . . . . . . . . . . . . . . 86 5.3.3 Procedures of adsorption and desorption . . . . . . . .. . . . . . 86 5.3.4 BET measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.4.1 Adsorption and desorption of NH 3 gas on clays and organoclays. . 88 5.4.2 Comparison of gas adsorption behavior . . . . . . . . . . . . . . 93 5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 99 6 ADSORPTION OF NH3 AND CO2 ON CLAY-TOCNF FILMS 101 6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.3 Experimental Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 104 6.3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.3.2 Instrumentation and techniques . . . . . . . . . . . . . . . . . . . . .104 6.3.3 Preparation of TEMPO-oxidized cellulose nano-fiber (TOCNF) . . 105 6.3.4 Preparation of organoclays . . . . . . . . . . . . . . . . . . . . . . . . 106 6.3.5 Preparation of clay-TOCNF film . . . . . . . . . . . . . . . . . . . 106 6.3.6 Procedure for adsorptions of CO2 and NH3 gases . . . . . . 107 6.3.7 BET measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.4.1 Characterizations of TOCNF and clay-TOCNF films . . . . 108 6.4.2 Gas adsorption and desorption . . . . . . . . . . . . . . . . . . . . . 113 6.4.3 BET surface area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 119 6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 122 7 KINETIC STUDY FOR CO2 ADSORPTION ON MODIFIED CLAYS 124 7.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.3 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.3.2 Preparation of organoclays . . . . . . . . . . . . . . . . . . . . . . . 127 7.3.3 Procedures of adsorption and desorption . . . . . . . . . . . . . 128 7.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.4.1 Adsorption of CO2 on clays . . . . . . . . . . . . . . . . . . . . . . 128 7.4.2 Adsorption of CO 2 on organoclays . . . . . . . . . . . . . . . . . 137 7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Bibliography 150 A Appendix 173 A.1 ∗Calculation for Distribution of QASs on MMT . . . . . . . . . .. . 173

[1] Watson, R. T.; Noble, I. R.; Bolin, B.; Ravindranath, N. H.; Verardo, D. J.; Dokken,
D. J.; (Eds.). Land Use, Land-Use Change and Forestry. IPCC. Cambridge University
Press, UK, 2000, 375.
[2] Roy, W. S. UAH Global Temperature Update for Jan. 2015: +0 . 35 deg.
C; 2015, [ Online ]. Available: http://www.drroyspencer.com/2015/02/uah-globaltemperature-update-for-jan-2015-0-35-deg-c/
[3] Kreileman, G. J. J.; Bouwman, A. F. Computing Land Use Emissions of Greenhouse
Gases. Kluwer Academic Publishers, Springer Netherlands, 1994, 231-258.
[4] Kindermann, G.; Obersteiner, M.; Sohngen, B.; Sathaye, J.; Andrasko, K.; Rametsteiner, E.; Schlamadinger, B.; Wunder, S.; Beach, R. Global Cost Estimates of
Reducing Carbon Emissions Through Avoided Deforestation. PNAS. 2008, 105(30),
10302-10307.
[5] Blasing, T. J. Recent Greenhouse Gas Concentrations; 2014, [ Online ]. Available:
http://cdiac.ornl.gov/pns/current-ghg.html
[6] Pearce, D. The Role of Carbon Taxes in Adjusting to Global Warming. The Economic
Journal 1991, 101 (407), 938-948.
[7] Metz, B.; Davidson, O. R.; Bosch, P. R.; Dave, R.; Meyer, L. A.; (Eds.). Climate
Change 2007 Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
[8] Rackley, S. A. Carbon Capture and Storage. Burlington, MA: ButterworthHeinemann/Elsevier, 2010.
[9] McCarthy, J. J.; Canziani, O. F.; Leary, N. A.; Dokken, D. J.; White, K. S. Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working
Group II to the Third Assessment Report of the Intergovernmental Panel on Climate
Change. Published for the Intergovernmental Panel on Climate Change, Cambridge
University Press, UK, 2001.
[10] Sharpe, R. R.; Harper, L. A. Soil, Plant and Atmospheric Conditions as They Relate
to Ammonia Volatilization. Fertilizer research 1995, 42(1-3), 149-158.
[11] Aneja, V. P.; Roelle, P. A.; Murray, G. C.; Southerland, J.; Erisman, J. W.; Fowler,
D.; Asman, W. A. H.; Patni, N. Atmospheric Nitrogen Compounds II: Emissions,
Transport, Transformation, Deposition and Assessment. Atmospheric Environment
2001, 35, 1903-1911.
[12] Snyder, C. S.; Bruulsema, T.W.; Jensen, T. L.; Fixen, P. E. Review of Greenhouse
Gas Emissions from Crop Production Systems and Fertilizer Management Effects.
Agriculture, Ecosystems and Environment. 2009, 133, 247-266.
[13] Rice, S. A. Health Effects Of Acute And Prolonged CO2 Exposure In Normal And
Sensitive Populations. Second Annual Conference On Carbon Sequestration, Alexandria, Virginia, USA, May 5-8, 2003.
[14] Spengler, J. D.; Sexton, K. Indoor Air Pollution: A Public Health Perspective. Science. 1983, 221 (4605), 9-17.
[15] United States Bureau of Land Management. Salt Creek Phases III/IV Environmental Assessment: Appendix C. Howell Petroleum. (#WYO60-EA06-18) Casper Field
Office: Dept. of the Interior, 2006.
[16] Guo, J.; Xu, W. S.; Chen, Y. L.; Lua, A. C. Adsorption of NH 3 on to activated
carbon prepared from palm shells impregnated with H 2SO 4. Journal of Colloid and
Interface Science 2005, 281 (2), 285-290.
[17] Padmesh, T. V. N.; Vijayaraghavan, K.; Sekaran, G.; Velan, M. Batch and Column
Studies on Biosorption of Acid Dyes on Fresh Water Macro Alga Azolla Filiculoides.
Journal of Hazardous Materials. 2005, 125(1), 121-9.
[18] Parkash, B.; Velan, M. Adsorption of Bismark Brown Dye on the Activated Carbons Prepared from Rubber Wood Sawdust Using Different Activation Methods.
Hazardous Materials. 2005, 126, 63-70.
[19] Ahuja, D.; Tatsutani, M. Sustainable Energy for Developing Countries. Veolia Environment. 2009, 2(1), 1-16.
[20] Chmielarz, L.; Jablo«ska, M. Advances in Selective Catalytic Oxidation of Ammonia
to Dinitrogen: A Review. RSC Advances. 2015, 5, 43408-43431.
[21] Yeo, S. C.; Han, S. S.; Lee, H. M. Mechanistic Investigation of the Catalytic Decomposition of Ammonia (NH 3) on an Fe(100) Surface: A DFT Study. J. Phys. Chem.
C 2014, 118(10), 5309-5316.
[22] Okada, A.; Usuki, A. Twenty Years of Polymer-Clay Nanocomposites. Macromol.
Mater. Eng. 2006, 291, 1449-1476.
[23] Patel, H. A.; Somani, R. S.; Bajaj, H. C.; Jasra, R. V. Nanoclays for Polymer
Nanocomposites, Paints, Inks, Greases and Cosmetics Formulations, Drug Delivery
Vehicle and Waste Water Treatment. Bull. Mater. Sci. 2006, 29(2), 133-145.
[24] Srinath, G.; Gnanamoorthy, R. Effect of Nanoclay Reinforcement on Tensile and
Tribo Behaviour of Nylon 6. J. Mater. Sci. 2005, 40, 2897-2901.
[25] Kushmono; MohdIshak, Z. A; Chow, W. S.; Takeichi, T.; Rochamadi. Society of
Plastic Engineering 2009. Polym. Compos. 2009, 1-12.
[26] Maji, P. K.; Guchhait, P. K.; Bhowmick, A. K. Effect of Nanoclays on Physico Mechanical Properties and Adhesion of Polyester-Based Polyurethane Nanocomposites: Structure-Property Correlations. J. Mater. Sci. 2009, 44, 5861-5871.
[27] Dornelas, C. B.; Da Silva, A. M.; Dantas, C. B.; Rodrigues, C. R.; Continho, S. S.;
Sathler, P. C.; Castro, H. C.; Dias, L. R.; De Sousa, V. P.; Cabral, L. M. Preparation
and Evaluation of a New Nano Pharmaceutical Excipients and Drug Delivery System
Based in Polyvinylpyrrolidone and Silicate. J. Pharm. Pharm. Sci. 2011, 14 (1), 17-
35.
[28] Patel, H. A.; Shah, S.; Shah, D. O.; Joshi, P. A. Sustained Release of Venlafaxine
from Venlafaxine- Montmorillonite-Polyvinylpyrrolidone Composites. Appl. Clay Sci.
2011, 51, 126-130.
[29] Suresh, R.; Borkar, S. N.; Sawant, V. A.; Shende, V. S.; Dimple, S. K. Nanoclay
Drug Delivery System. Int. J. Pharm. Sci. Nanotechnol. 2010, 3(2), 901-905.
[30] Costa, A. S.; Imae, T. Morphological Investigation of Hybrid Langmuir-Blodgett
Films of Arachidic Acid with a Hydrotalcite/Dendrimer Nanocomposite. Langmuir,
2004, 20(20), 8865-8869.
[31] Costa, A. S.; Imae, T.; Takagi, K.; Kikuta, K. Intercalation of Dendrimers in the
Interlayer of Hydrotalcite Clay Sheet. Prog. Colloid Polym. Sci. 2004, 128, 113-119.
[32] Manocha, S.; Patel, N.; Manocha, L. M. Development And Characterisation of Nanoclays from Indian Clays. Defence Sci. J. 2008, 58(4), 517-524.
[33] Kim, W.; Chang, D. -W.; Kim, J. H. Effect of Length of Hydroxyalkyl Groups in the
Clay Modifier on the Properties of Thermoplastic Polyurethane/Clay Nanocomposites J. Appl. Polym. Sci. 2008, 110(5), 3209-3216.
[34] Jin, H.; Wie, J. J.; Kim, S. C. Effect of Organoclays on the Properties of
Polyurethane/Clay Nanocomposite CoatingsJ. Appl. Polym. Sci. 2010, 117(4),
2090-2100.
[35] Nakas, G. I.; Kaynak, C. Use of Di erent Alkylammonium Salts in Clay Surface
Modification for Epoxy-Based Nanocomposites. Polym. Compos. 2009, 30(3), 357-
363.
[36] Dai, J. C.; Huang, J. T. Surface Modification of Clay and Clay-Rubber Composite.
Appl. Clay Sci. 1999, 15, 51-65.
[37] Baltunikas, A.; Lukoiute, I.; Baltakys, K. XRD Characterization of Organically
Modified Gyrolite. Mater. Sci. 2009, 15(4), 325-328.
[38] Bertagnolli, C.; Pereira De Araujo, A. L.; Kleinübing, S.; Carlos Da Silva, M. G.
Evaluation of Brazilian Organoclay Synthesized in the Laboratory and Commercial.
Chem. Eng. Trans. 2011, 24, 1537-1542.
[39] Hang, P. T.; Brindley, G. W. Methylene Blue Absorption by Clay Minerals. Determination of Surface Areas and Cation Exchange Capacities (Clay-Organic Studies
XVIII). Clays Clay Miner. 1970, 18(4), 203-212.
[40] Onoshima, D.; Imae, T. Dendritic Nano- and Microhydrogels Fabricated by Triethoxysilyl Focal Dendrons. Soft Matter 2006, 2, 141-148.
[41] Cole, K. C. Use of Infrared Spectroscopy To Characterize Clay Intercalation and
Exfoliation in Polymer Nanocomposites. Macromolecules 2008, 41 (3), 834-843.
[42] Myrzakozha, D. A.; Hasegawa, T.; Nishijo, J.; Imae, T.; Ozaki, Y. Structural Characterization of Langmuir- Blodgett Films of Octadecyldimethylamine Oxide and Dioctadecyldimethylammonium Chloride. 2. Thickness Dependence of Thermal Behavior
Investigated by Infrared Spectroscopy and Wetting Measurements. Langmuir 1999,
15(10), 3601-3607.
[43] Myrzakozha, D. A.; Hasegawa, T.; Nishijo, J.; Imae, T.; Ozaki, Y. An Infrared
Study of Molecular Orientation and Structure in One-Layer Langmuir-Blodgett
Films of Octadecyldimethylamine Oxide and Dioctadecyldimethylammonium Chloride: Dependence of the Structures of the Langmuir-Blodgett Films on Substrates,
Aging, and pH of Water Subphase. Langmuir 1999, 15(20), 6890-6896.
[44] Van Oss, C. J.; Giese, R. F. The Hydrophilicity and Hydrophobicity of Clay Minerals.
Clays Clay Miner. 1995, 43(4), 474-477.
[45] Alexandre, M.; Dubois, P. Polymer-Layered Silicate Nanocomposites: Preparation,
Properties and Uses of a New Class of Materials. Materials Science and Engineering
2000, 28, 1-63.
[46] Jeon, I. -Y.; Baek, J. -B. Nanocomposites Derived from Polymers and Inorganic
Nanoparticles. Materials 2010, 3(6), 3654-3674.
[47] Jordan, J.; Jacob, K. I.; Tannenbaum, R.; Sharaf, M. A.; Jasiuk, I. Experimental
Trends in Polymer Nanocomposites - A Review. Mater. Sci. Eng. A 2005, 393, 1-11.
[48] Rozman, H. D.; Rozyanty, A. R.; Musa, L.; Tay, G. S. Ultra-Violet Radiation-Cured
Biofiber Composites from Kenaf: The Effect of Montmorillonite on the Flexural and
Impact Properties. Journal of Wood Chemistry and Technology 2010, 30, 152-163.
[49] Lin, J. -J.; Chan, Y. -N.; Lan, Y. -F. Hydrophobic Modification of Layered Clays
and Compatibility for Epoxy Nanocomposites. Materials. 2010, 3, 2588-2605.
[50] Pavlidou, S.; Papaspyrides, C. D. A Review on Polymer-Layered Silicate Nanocomposites. Progress in Polymer Science. 2008, 33, 1119-1198.
[51] Inceolu, A. B.; Yilmazer, U. Synthesis and Mechanical Properties of Unsaturated
Polyester Based Nanocomposites. Polymer Engineering & Science 2003, 43(3) 661-
669.
[52] Gleiter, H. Proceedings of the 9th IVC-V, Madrid, Spain, 1983, 397.
[53] Gleiter, H. Nanocrystalline materials. Prog. Mater. Sci. 1989, 33, 223-315.
[54] Suryanarayana, C. Nanocrystalline materials. International Materials Reviews 1995,
40, 41-64.
[55] Meyers, M. A.; Mishra, A.; Benson, D. J. Mechanical Properties of Nanocrystalline
Materials. Prog. Mater. Sci. 2006, 51, 427-556.
[56] Karch, J.; Brringer, R.; Gleiter, H. Ceramics Ductile at Low Temperature. Nature
1987, 330, 556-558.
[57] Mayo, M. J.; Hague, D. C.; Chen, D. -J. Processing Nanocrystalline Ceramics for
Applications in Superplasticity. Mater. Sci. Eng.: A 1993, 166(1-2), 145-159.
[58] Liu, P. Polymer Modified Clay Minerals: A Review. Applied Clay Science 2007,
38(1-2), 64-76.
[59] Ray, S. S.; Okamoto, M. Polymer/Layered Silicate Nanocomposites: A Review from
Preparation to Processing. Progress in Polymer Science 2003, 28(11), 1539-1641.
[60] Shah, K. J.; Mishra, M. K.; Shukla, A. D.; Imae, T.; Shah, D. O. Controlling Wettability and Hydrophobicity of Organoclays Modified with Quaternary Ammonium
Surfactants. J. Colloid Interface Sci. 2013, 407, 493-499.
[61] Shah, K. J.; Shukla, A.; Imae, T.; Shah, D. O. 248th ACS National Meeting & Exposition, Sanfransisco, USA. Controlled Water and Oil Penetration of Organically
Modified Clays by Choice of Cationic Surfactants with Variety of Substituents. August 2013.
[62] Liu, X.; Wu, Q. PP/Clay Nanocomposites Prepared by Grafting-Melt Intercalation.
Polymer 2001, 42(25), 10013-10019.
[63] Bharadwaj, R. K.; Mehrabi, A. R.; Hamilton, C.; Trujillo, C.; Murga, M.;
Fan, R.; Chavira, A.; Thompson, A. K. Structure-Property Relationshipin CrossLinkedpolyester-Clay Nanocomposites. Polymer 2002, 43(13), 3699-3705.
[64] Tsai, T. -Y.; Li, C. -H.; Chag, C. -H.; Cheng, W. -H.; Hwang, C. -L.; Wu, R. -J.
Preparation of Exfoliated Polyester/Clay Nanocomposites. Adv. Mater. 2005, 17,
1769-1773.
[65] Kornmann, X.; Berglund, L. A.; Sterte, J.; Giannelis, E. P. Nanocomposites Based on
Montmorillonite and Unsaturated Polyester. Polymer Engineering & Science 1998,
38(8), 1351-1358.
[66] Beheshty, M. H.; Vafayan, M.; Poorabdollah, M. Low Pro le Unsaturated Polyester
Resin-Clay Nanocomposite Properties. Polymer Composites 2009, 529-638.
[67] Zhang, Y.; Cai, Q.; Jiang, Z.; Gong, K. Preparation and Properties of Unsaturated
Polyester-Montmorillonite Intercalated Hybridm. Journal of Applied Polymer Science, 2004, 92, 2038-2044.
[68] Mironi-Harpaz, I.; Narkis, M.; Siegmann, A. Nanocomposite Systems Based on Unsaturated Polyester and Organo-Clay. Polymer Engineering & Science 2005, 174-186.
[69] Shah, K. J.; Imae, T.; Shukla, A. Selective Capture of CO2 by Poly(amido amine)
Dendrimer-Loaded Organoclays. RSC Adv. 2015, 5, 35985-35992.
[70] Pashaei, S.; Siddaramaiah, S.; Syed, A. A. Thermal Characteristics of Nanostructured Filler Incorporated Polyvinyl ester Nanocomposites. International Journal of
Chem. Tech. Research 2011, 3(1), 94-103.
[71] Dawson, R.; Stöckel, E.; Holst, J. R.; Adams, D. J.; Cooper, A. I. Microporous
Organic Polymers for Carbon Dioxide Capture. Energy Environ. Sci. 2011, 4, 4239-
4245.
[72] Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R. B.; Bland, A. E.; Wright, I.
Progress in Carbon Dioxide Separation and Capture: A Review. J. Environ. Sci.
2008, 20, 14-27.
[73] Heydari-Gorji, A.; Sayari, A. CO 2 Capture on Polyethylenimine-Impregnated Hydrophobic Mesoporous Silica: Experimental and Kinetic Modeling. Chem. Eng. J.
2011, 173, 72-79.
[74] Kim, J.; Lin, L. C.; Swisher, J. A.; Haranczyk, M.; Smit, B. Predicting Large CO 2
Adsorption in Aluminosilicate Zeolites for Postcombustion Carbon Dioxide Capture.
J. Am. Chem. Soc. 2012, 134, 18940-18943.
[75] Zhao, A.; Samanta, A.; Sarkar, P.; Gupta, R. Carbon Dioxide Adsorption on AmineImpregnated Mesoporous SBA-15 Sorbents: Experimental and Kinetics Study. Ind.
Eng. Chem. Res. 2013, 52, 6480-6491.
[76] Kentish, S.; Scholes, C.; Stevens, G. Carbon Dioxide Separation through Polymeric
Membrane Systems for Flue Gas Applications. Recent Pat. Chem. Eng. 2008, 1,
52-66.
[77] Patel, H. A.; Karadas, F.; Canlier, A.; Park, J.; Deniz, E.; Jung, Y.; Atilhan, M.;
Yavuz, C. T. High Capacity Carbon Dioxide Adsorption by Inexpensive Covalent
Organic Polymers. J. Mater. Chem. 2012, 22, 8431-8437.
[78] Patel, H. A.; Yavuz, C. T. Noninvasive Functionalization of Polymers of Intrinsic
Microporosity for Enhanced CO2 Capture. Chem. Commun. 2012, 48, 9989-9991.
[79] Dawson, R.; Stevens, L. A.; Drage, T. C.; Snape, C. E.; Smith, M. W.; Adams,
D. J.; Cooper, A. I. Impact of Water Coadsorption for Carbon Dioxide Capture in
Microporous Polymer Sorbents. J. Am. Chem. Soc. 2012, 134, 10741-10744.
[80] Kannaiyan, D.; Imae, T. pH-Dependent Encapsulation of Pyrene in PPI-Core:
PAMAM-Shell Dendrimers. Langmuir 2009, 25, 5282-5285.
[81] Saravanan, G.; Imae, T. Visual Observation and Characterization of Fluorescent
Poly (amido amine) Dendrimer in Film State. J. Nanosci. Nanotechnol., 2011, 11,
4838-4845.
[82] Roth, E. A.; Agarwal, S.; Gupta, R. K. Nanoclay-Based Solid Sorbents for CO2
Capture. Energy Fuels 2013, 27, 4129-4136.
[83] Serna-Guerrero, R.; Da'na, E.; Sayari, A. New Insights into the Interactions of CO2
with Amine-Functionalized Silica. Ind. Eng. Chem. Res. 2008, 47, 9406-9412.
[84] Hudson, M. R.; Queen, W. L.; Mason, J. A.; Fickel, D. W.; Lobo, R. F.; Brown,
C. M. Unconventional, Highly Selective CO2 Adsorption in Zeolite SSZ-13. J. Am.
Chem. Soc. 2012, 134, 1970-1973.
[85] Fadhel, B.; Hearn, M.; Chaffee, A. CO2 Adsorption by PAMAM Dendrimers: Significant Effect of Impregnation Into SBA-15. Microporous Mesoporous Mater. 2009,
123, 140-149.
[86] Wang, W.; Wang, X.; Song, C.; Wei, X.; Ding, J.; Xiao, J. Sulfuric Acid Modified
Bentonite as the Support of Tetraethylenepentamine for CO 2 Capture. Energy Fuels
2013, 27, 1538-1546.
[87] Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z.
R.; Bae, T. H.; Long, J. R. Carbon Dioxide Capture in Metal-Organic Frameworks.
Chem. Rev. 2012, 112, 724-781.
[88] Siriwardane, R. V.; Shen, M.; Fisher, E. P.; Poston, J. A.; Box, P. O.; Virginia, W.
Adsorption of CO2 on Molecular Sieves and Activated Carbon. Energy Fuels 2001,
15, 279-284.
[89] Chang, A. C. C.; Chuang, S. S. C.; Gray, M.; Soong, Y. In-Situ Infrared Study of
CO 2 Adsorption on SBA-15 Grafted with γ-(Aminopropyl) Triethoxysilane. Energy
Fuels 2003, 17, 468-473.
[90] Lee, S. M.; Tiwari, D. Organo and Inorgano-Organo-Modified Clays in the Remediation of Aqueous Solutions: An Overview. Appl. Clay Sci. 2012, 59-60, 84-102.
[91] Paiva, L. B.; Morales, A. R.; Valenzuela Díaz, F. R. Organoclays: Properties, Preparation and Applications. Appl. Clay Sci. 2008, 42, 8-24.
[92] Wang, X.; Akhmedov, N. G.; Duan, Y.; Luebke, D.; Hopkinson, D.; Li, B. Amino
Acid-Functionalized Ionic Liquid Solid Sorbents for Post-Combustion Carbon Capture. Appl. Mater. Interfaces 2013, 5, 8670-8677.
[93] Kovvali, A. S.; Sirkar, K. K. Dendrimer Liquid Membranes: CO 2 Separation from
Gas Mixtures. Ind. Eng. Chem. Res. 2001, 40, 2502-2511.
[94] Azzouz, A.; Assaad, E.; Ursu, A. V,; Sajin, T.; Nistor, D.; Roy, R. Carbon Dioxide
Retention Over Montmorillonite-Dendrimer Materials. Appl. Clay Sci. 2010, 48, 133-
137.
[95] Leisner, D.; Imae, T. Polyelectolyte Behavior of an Interpolyelectrolyte Complex Formed in Aqueous Solution of a Charged Dendrimer and Sodium Poly(LGlutamate). J. Phys. Chem. B 2003, 107, 13158-13167.
[96] Vaccari, A. Preparation and Catalytic Properties of Cationic and Anionic Clays.
Catal. Today 1998, 41, 53-71.
[97] Herrera, N. N.; Putaux, J. L.; Lami, E. B. Synthesis of Polymer/Laponite Nanocomposite Latex Particles Via Emulsion Polymerization Using Silylated and CationExchanged Laponite Clay Platelets. Prog. Solid State Chem. 2006, 34, 121-137.
[98] Shih, Y.; Shen, Y. Swelling of Sericite by LiNO 3-Hydrothermal Treatment. Appl.
Clay Sci. 2009, 43, 282-288.
[99] Duijvenbode, R. C. V.; Koper, G. J. M.; Böhmer, M. R. Adsorption of Poly(propylene
imine) Dendrimers on Glass. An Interplay Between Surface and Particle Properties.
Langmuir 2000, 16, 7713-7719.
[100] Herrera, N. N.; Letoffe, J.; Putaux, J.; David, L.; Bourgeat-lami, E. Aqueous Dispersions of Silane-Functionalized Laponite Clay Platelets. A First Step toward the
elaboration of water-based polymer/clay nanocomposites. Langmuir 2004, 20(5),
1564-1571.
[101] Mitamura, K.; Imae, T. Structure Determination of Hybrid Films of Clay and
Clay/Dendrimer Nano-Composite on Langmuir-Blodgett Film by X-Ray Reflectometry. Trans. Mater. Res. Soc. Jpn. 2003, 28, 71-74.
[102] Lin, W.; Galletto, P.; Borkovec, M. Charging and Aggregation of Latex Particles
by Oppositely Charged Dendrimers. Langmuir 2004, 20(18), 7465-7473.
[103] Ottaviani, M. F.; Andechaga, P.; Turro, N. J.; Tomalia, D. A. Model for the Interactions between Anionic Dendrimers and Cationic Surfactants by Means of the Spin
Probe Method. J. Phys. Chem. B 1997, 101, 6057-6065.
[104] Costa, A. S.; Imae, T. Complexation of Dendrimer-Protected Silver Nanoparticles
with Hydrotalcite. Trans. Mater. Res. Soc. Jpn. 2004, 29, 3211-3214.
[105] Li, X.; Imae, T.; Leisner, D.; López-Quintela, M. A. Lamellar Structures of Anionic
Poly(amido amine) Dendrimers with Oppositely Charged Didodecyldimethylammonium Bromide. J. Phys. Chem. B 2002, 106(47), 12170-12177.
[106] Ito, M.; Imae, T. Self-assembled Monolayer of Carboxyl-terminated Poly(amido
amine) Dendrimer. J. Nanosci. Nanotechnol. 2006, 6, 1667-1672.
[107] Ozturk, O.; Black, T. J.; Perrine, K.; Pizzolato, K.; Williams, C. T.; Parsons, F. W.;
Ratli , J. S.; Gao, J.; Murphy, C. J.; Xie, H.; Ploehn, H. J.; Chen, D. A. Thermal
Decomposition of Generation-4 Polyamidoamine Dendrimer Films: Decomposition
Catalyzed by Dendrimer-Encapsulated Pt Particles. Langmuir 2005, 21, 3998-4006.
[108] Wark, K.; Warner, C. F.; Davis, W. T. Air Pollution: Its Origin and Control. (3rd
edition), Harper and Row Publishers, New York, 1997.
[109] Tan, Z. Air Pollution and Greenhouse Gases: From Basic Concepts to Engineering
Applications for Air Emission Control. Springer, 2014.
[110] Jensen, J. O.; Vestbo, A. P.; Li, Q.; Bjerrum, N. J. The Energy E ciency of Onboard
Hydrogen Storage. J. Alloys Compd. 2007, 446-447, 723-728.
[111] Yin, S. F.; Xu, B. Q.; Zhou, X. P.; Au, C. T. A Mini-Review on Ammonia Decomposition Catalysts for On-Site Generation of Hydrogen for Fuel Cell Applications.
Applied Catalysis A: General 2004, 277(1-2), 1-9.
[112] Timmer, B.; Olthuis, W.; Berg, A. V. D. Ammonia Sensors and Their Applications
- A Review. Sensors and Actuators B: Chemical 2005, 107(2), 666-677.
[113] Twigg, M. V. Progress and Future Challenges in Controlling Automotive Exhaust
Gas Emissions. Applied Catalysis B: Environmental 2007, 70(1-4), 2-15.
[114] Bernal, M. P.; Lopez-Real, J. M. Natural Zeolites and Sepiolite as Ammonium and
Ammonia Adsorbent Materials. Bioresource Technology 1993, 43(1), 27-33.
[115] Shafeeyan, M. S.; Daud, W. M. A. W.; Houshmand, A.; Shamiri, A. A Review on
Surface Modification of Activated Carbon for Carbon Dioxide Adsorption. Journal
of Analytical and Applied Pyrolysis 2010, 89(2), 143-151.
[116] Leuch, L. M. Le.; Bandosz, T. J. The Role of Water and Surface Acidity on the
Reactive Adsorption of Ammonia on Modified Activated Carbons. Carbon 2007,
45(3), 568-578.
[117] Bandosz, T. J.; Petit, C. On the Reactive Adsorption of Ammonia on Activated
Carbons Modified by Impregnation with Inorganic Compounds. Journal of Colloid
and Interface Science 2009, 338, 329-345.
[118] Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective Gas Adsorption and Separation in
Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38(5), 1477-1504.
[119] Sugiura, M.; Hayashi, H.; Suzuki, T. Adsorption of Ammonia by Sepiolite in Ambient Air. Clay Science 1991, 8(2), 87-100.
[120] Huang, C. -C.; Li, H. -S.; Chen, C. -H. Effect of Surface Acidic Oxides of Activated
Carbon on Adsorption of Ammonia. Journal of Hazardous Materials 2008, 159, 523-
527.
[121] Romero, J. V.; Smith, J. W. H.; Sullivan, B. M.; Macdonald, L.; Croll, L.
M.; Dahn, J. R. Evaluation of The SO 2 and NH 3 Gas Adsorption Properties of
CuO/ZnO/Mn 3O 4 and CuO/ZnO/NiO Ternary Impregnated Activated Carbon Using Combinatorial Materials Science Methods. ACS Comb. Sci. 2013, 15(2), 101-110.
[122] Kumagak, S.; Kawa, K. L.; Taked, K. Ammonia Gas Adsorption by Carbonized
Rice Husk. Int. J. Soc. Mater. Eng. Resour 2006, 13(2), 92-95.
[123] Freney, J.; Simpson, J. R. (Eds.) Gaseous Loss of Nitrogen from Plant-Soil Systems.
Developments in Plant and Soil Sciences. Springer, 9, 1983.
[124] Nieder, R.; Benbi, D. K.; Scherer, H. W. Fixation and Defixation of Ammonium in
Soils: A Review. Biology and Fertility of Soils 2011, 47(1), 1-14.
[125] Wang, W.; Liu, P.; Zhang, M.; Hu, J.; Xing, F. The Pore Structure of Phosphoaluminate Cement. Open Journal of Composite Materials 2012, 2, 104-112.
[126] Ishihara, S.; Sahoo, P.; Deguchi, K.; Ohki, S.; Tansho, M.; Shimizu, T.; Labuta,
J.; Hill, J. P.; Ariga, K.; Watanabe, K.; Yamauchi, Y.; Suehara, S.; Iyi, N. Dynamic
Breathing of CO2 by Hydrotalcite. J. Am. Chem. Soc. 2013, 135(48), 18040-18043.
[127] Karl, T. R.; Trenberth, K. E. Modern Global Climate Change. Science 2003,
302(5651), 1719-1723.
[128] Seinfeld, J. H.; Pandis, S. N.; Noone, K. Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change. John Wiley & Sons, New York, USA, 2006, 51 (10),
1326.
[129] Stern, N. The Economics of Climate Change: The Stern Review. Great Britain,
Treasury, Cambridge University Press, January 2007.
[130] Cole, C. V.; Duxbury, J.; Freney, J.; Heinemeyer, O.; Minami, K.; Mosier, A.; Paustian, K.; Rosenberg, N.; Sampson, N.; Sauerbeck, D.; Zhao, Q. Global Estimates of
Potential Mitigation of Greenhouse Gas Emissions by Agriculture. Nutrient Cycling
in Agroecosystems 1997, 49(1-3), 221-228.
[131] Yu, C. -H.; Huang, C. -H.; Tan, C. -S. A Review of CO2 Capture by Absorption
and Adsorption. Aerosol and Air Quality Research 2012, 12, 745-769.
[132] Smil, V. Nitrogen in Crop Production: An account of Global Flows. Global Biogeochemical Cycles 1999, 13(2), 647-662.
[133] Horrigan, L.; Lawrence, R. S.; Walker, P. How Sustainable Agriculture Can Address
The Environmental and Human Health Harms of Industrial Agriculture. Environ
Health Perspect. 2002, 110(5), 445-456.
[134] Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic Potential of Materials at the Nanolevel.
Science 2006, 311 (5761), 622-627.
[135] Yoon, K.; Hsiao, B. S.; Chu, B. Functional Nanofibers for Environmental Applications. J. Mater. Chem. 2008, 18, 5326-5334.
[136] Petersen, K.; Nielsen, P. V.; Bertelsen, G.; Lawther, M.; Olsen, M. B.; Nilsson, N.
H.; Mortensen, G. Potential of Biobased Materials for Food Packaging. Trends in
Food Science & Technology 1999, 10(2), 52-68.
[137] Mohanty, A. K.; Misra, M.; Drzal, L. T. Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in The Green Materials World.
Journal of Polymers and the Environment 2002, 10(1-2), 19-26.
[138] Bhardwaj, R.; Mohanty, A. K.; Drzal, L. T.; Pourboghrat, F.; Misra, M. Renewable Resource-Based Green Composites from Recycled Cellulose Fiber and Poly(3-
hydroxybutyrate-co-3-hydroxyvalerate) Bioplastic. Biomacromolecules 2006, 7(6),
2044-2051.
[139] Kalia, S.; Dufresne, A.; Cherian, B. M.; Kaith, B. S.; Avérous, L.; Njuguna, J.;
Nassiopoulos, E. Cellulose-Based Bio- and Nanocomposites: A Review. International
Journal of Polymer Science 2011, 2011 (2011), 35.
[140] Fukuzumi, H.; Saito, T.; Iwata, T.; Kumamoto, Y.; Isogai, A. Transparent and High
Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation.
Biomacromolecules 2009, 10(1), 162-165.
[141] Brumer III, H.; Zhou, Q.; Baumann, M. J.; Carlsson, K.; Teeri, T. T. Activation
of Crystalline Cellulose Surfaces through the Chemoenzymatic Modi cation of Xyloglucan. J. Am. Chem. Soc. 2004, 126(18), 5715-5721.
[142] Gawryla, M. D.; Berg, O. V. D.; Weder, C.; Schiraldi, D. A. Clay Aerogel/Cellulose
Whisker Nanocomposites: A Nanoscale Wattle and Daub. J. Mater. Chem. 2009,
19, 2118-2124.
[143] Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose Nanofibers Prepared by
TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules 2007, 8(8),
2485-2491.
[144] Fukuzumi, H.; Saito, T.; Isogai, A. Influence of TEMPO-Oxidized Cellulose
Nanofibril Length on Film Properties. Carbohydrate Polymers 2013, 93(1), 172-177.
[145] Mohanty, S.; Nayak, S. K.; Kaith, B. S.; Kalia, S. Polymer Nanocomposites based
on Inorganic and Organic Nanomaterials. Wiley, Canada, 2015.
[146] Qiu, X.; Hu, S. “Smart” Materials Based on Cellulose: A Review of the Preparations,
Properties, and Applications. Materials 2013, 6(3), 738-781.
[147] Poole, A. J.; Church, J. S.; Huson, M. G. Environmentally Sustainable Fibers from
Regenerated Protein. Biomacromolecules 2009, 10(1), 1-8.
[148] Liu, A.; Walther, A.; Ikkala, O.; Belova, L.; Berglund, L. A. Clay Nanopaper with
Tough Cellulose Nanofiber Matrix for Fire Retardancy and Gas Barrier Functions.
Biomacromolecules 2011, 12(3), 633-641.
[149] Liu, A.; Berglund, L. A. Clay Nanopaper Composites of Nacre-like Structure Based
on Montmorrilonite and Cellulose Nanofibers-Improvements due to Chitosan Addition. Carbohydrate Polymers 2012, 87(1), 53-60.
[150] Liu, A.; Berglund, L. A. Fire-retardant and Ductile Clay Nanopaper Biocomposites
Based on Montmorrilonite in Matrix of Cellulose Nano bers and Carboxymethyl
Cellulose. European Polymer Journal 2013, 49(4), 940-949.
[151] Bendi, R.; Imae, T. Renewable Catalyst with Cu Nanoparticles Embedded into
Cellulose Nano-fiber Film. RSC Adv. 2013, 3, 16279-16282.
[152] Wise, L.E.; Marphy, M.; D'Adieco, A. A. Chlorite Holocellulose, its Fractionation
and Bearing on Summative Wood Analysis and on Studies on the Hemicelluloses.
Paper Trade J. 1946, 122(2), 35-43.
[153] Omer, A. M. Energy, Environment and Sustainable Development. Renew. Sustain
Energy Rev. 2008, 12(9), 2265-2300.
[154] Li, J. R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong, H. K.; Balbuena, P.
B.; Zhou, H. C. Carbon Dioxide Capture-related Gas Adsorption and Separation in
Metal-organic Frameworks. Coord. Chem. Rev. 2011, 255(15-16), 1791-1823.
[155] Maroto-Valer, M. M.; Song, C.; Soong, Y. Environmental Challenges and Greenhouse Gas Control for Fossil Fuel Utilization in the 21st Century. Kluwer Academic/Plenum Publishers, New York, 2009, 175-187.
[156] Rouquerol, F.; Rouquerol, J.; Singh, K. S. W.; Llewellyn, P.; Maurin, G. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications 2nd
edition. Academic Press: Elsevier: USA, 2014.
[157] Qiu, H.; Lv, L.; Pan, B.; Zhang, Q.; Zhang, W.; Zhang, Q. J. Critical Review in
Adsorption Kinetic Models. Zhejiang Univ. Sci. A. 2009, 10(5), 716-724.
[158] Luan, Z.; Fournier, J. A. In Situ FTIR Spectroscopic Investigation of Active
Sites and Adsorbate Interactions in Mesoporous Aluminosilicates SBA-15 Molecular Sieves. Microporous Mesoporous Mater. 2005, 79(1-3), 235-240.
[159] Zheng, F.; Tran, D. N.; Busche, B. J.; Fryxell, G. E.; Addleman, R. S.; Zemanian, T.
S.; Aardahl, C. L. Ethylenediamine-Modified SBA-15 as Regenerable CO2 Sorbent.
Ind. Eng. Chem. Res. 2005, 44 (9), 3099-3105.
[160] Hicks, J. C.; Drese, J. H.; Fauth, D. J.; Gray, M. L.; Qi, G.; Jones, C. W. Designing
Adsorbents for CO2 Capture from Flue Gas-Hyperbranched Aminosilicas Capable of
Capturing CO2 Reversibly. J. Am. Chem. Soc. 2008, 130(10), 2902-2903.
[161] Himeno, S.; Komatsu, T.; Fujita, S. High-Pressure Adsorption Equilibria of Methane
and Carbon Dioxide on Several Activated Carbons. J Chem. Eng. Data 2005, 50(2),
369-376.
[162] Menetrey, M.; Markovits, A.; Minot C. Reactivity of A Reduced Metal Oxide Surface: Hydrogen, Water and Carbon Monoxide Adsorption on Oxygen Defective Rutile
TiO 2(110). Surface Science 2003, 524, 49-62.
[163] Yang, R. T.; Baksh, M. S. A. Pillared Clays as a New Class of Sorbents for Gas
Separation. AIChE J. 1991, 37(5), 679-686.
[164] Malek, A.; Farooq, S. Comparison of Isotherm Models for Hydrocarbon Adsorption
on Activated Carbon. AIChE J. 1996, 42(11), 3191-3201.
[165] Ho, Y. S.; Mckay, G. A. Comparison of Chemisorption Kinetic Models Applied To
Pollutant Removal on Various Sorbents. Trans IChemE. 1988, 76(B), 332-340.
[166] Ho, Y. S.; Mckay, G. Pseudo-Second Order Model for Sorption Processes. Process
Biochem 1999, 34, 451-465.
[167] Ho, Y. S. Review of Second-Order Models for Adsorption Systems. J. Hazard. Mater.
B. 2006, 136, 681-689.
[168] Imae, T.; Torii, H. In Situ Investigation of Molecular Adsorption on Au Surface
by Surface-Enhanced Infrared Absorption Spectroscopy. J. Phys. Chem. B 2000,
104 (2), 9218-9224.
[169] Ito, M.; Imae, T.; Aoi, K.; Tsutsumiuchi, K.; Noda, H.; Okada, M. In Situ Investigation of Adlayer Formation and Adsorption Kinetics of Amphiphilic Surface-Block
Dendrimers on Solid Substrates. Langmuir 2002, 18(25), 9757-9764.
[170] Nagaoka, H.; Imae, T. Analytical Investigation of Two-step Adsorption Kinetics on
Surfaces. J. Colloid Interface Sci. 2003, 264 (2), 335-342.
[171] Chu, C. C.; Ueno, N.; Imae, T. Solid-Phase Synthesis of Amphiphilic DendronSurface-Modified Silica Particles and Their Application Toward Water Purification.
Chem. Mater. 2008, 20(8), 2669-2676.
[172] Brunauer, S.; Deming, L. S.; Deming W. E.; Teller, E. On a Theory of the van der
Waals Adsorption of Gases. J. Am. Chem. Soc. 1914, 62, 1723-1732.
[173] Sagiv, J. Organized Monolayers by Adsorption, I. Formation and Structure of Oleophobic Mixed Monolayers on Solid Surfaces. J. Am. Chem. Soc. 1980, 102(1), 92-98.
[174] Koh, S. M.; Dixon, J. B. Preparation and Application of Organo-Minerals as Sorbents of Phenol, Benzene and Toluene. Appl. Clay Sci. 2001, 18(3-4), 111-122.
[175] Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids.
Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221-2295.
[176] Brunauer, S.; Emmett P. H.; Teller, E. Adsorption of Gases in Multimolecular
Layers. J. Am. Chem. Soc. 1938, 60, 309-319.
[177] Hanson, R. S.; Craig, P. R. The Adsorption of Aliphatic Alcohols and Acids from
Aqueous Solutions by Non-Porous Carbons. J. Phys. Chem. 1954, 58, 211-215.
[178] Dunicz, B. L. Surfme Area of Activated Charcoal by Langmuir Adsorption Isotherm.
J. Chem. Ed. 1961, 38, 357-358.
[179] Masel, R. I. Principles of adsorption and reaction on solid surfaces. John Wiley &
Sons, Canada, 1996.
[180] Liu, Y.; Shen, L. From Langmuir Kinetics to First- and Second-Order Rate Equations for Adsorption. Langmuir 2008, 24 (20), 11625-11630.

無法下載圖示 全文公開日期 2020/07/30 (校內網路)
全文公開日期 2025/07/30 (校外網路)
全文公開日期 2025/07/30 (國家圖書館:臺灣博碩士論文系統)
QR CODE