簡易檢索 / 詳目顯示

研究生: 沈伯豪
Po-Hao Shen
論文名稱: 水泥質基材與面材界面超音波反射行為之研究
A Study on Reflection Behavior of Ultrasonic Waves at the Interface Cement-Based Materials and Cover layer
指導教授: 張大鵬
Ta-peng Chang
口試委員: 陳君弢
Chun-tao Chen
王鶴翔
He-hsiang Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 149
中文關鍵詞: 水泥基質材料超音波實驗數值模擬音阻抗反射率衰減值
外文關鍵詞: Cement-Based Material, Ultrasonic Wave, Numerical Simulation, Acoustic Impedance, Reflectivity
相關次數: 點閱:305下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究涵括超音波數值模擬與超音波實驗兩個區塊,探求不同新拌修補水泥質基材之超音波反射行為,未來可藉由現地超音波檢測,評估土木結構修補狀況。數值模擬應用LS-DYNA軟體,以2-D平面軸對稱有限元素,分析超音波於大理石單層板模式(單層版模型)與大理石上層與水泥質基材下層(雙層版模型)兩種構件之波傳行為,單層版模型材料變數為楊氏係數(150、100及50 GPa)、容積密度(1,750、2,750及3,750 kg/m3)以及卜松比(0.1、0.2及0.3);雙層版模型變化水泥質基材特性之楊氏係數(40、30及20 GPa)、容積密度(1,000、2,000及3,000 kg/m3)與卜松比(0.1、0.2及0.3),上層厚度(10、15及20 mm),建構超音波反射行為關係。雙層版超音波實驗雷同雙層版模型,固定上層面材為大理石,改變下層水泥質修補材料為水泥砂漿、無收縮水泥砂漿、活性粉混凝土以及自充填混凝土等四種材料,隨著齡期發展音阻抗與衰減值之關係,並對照實驗與數值模擬結果。
研究結果顯示:改變單層版材料性質楊氏係數、容積密度及卜松比,大理石對應衰減值變化介於5 dB至9 dB之間,差異性不大;超音波衰減值主要隨楊氏係數增加而遞減。雙層版數值模擬時,改變下層材料性質,下層材料音阻抗增大與上層材料音阻抗愈接近,即音阻比愈大而反射率愈小,超音波衰減值愈大;衰減值介於12 dB至28 dB之間,雙層版模型之衰減值較單層版模型明顯高約2至3倍;上層材料厚度愈大,超音波衰減值也愈大,當厚度自10 mm增至20 mm,超音波衰減值則由26.17 dB增至32.84 dB,並建構不同厚度反射率與衰減值之關係式。10 mm厚上層大理石版貼附於四種水泥質基材料之超音波實驗,活性粉混凝土之超音波衰減率為較高者,平均介於19.98 dB至22.90 dB之間,無收縮水泥砂漿之超音波衰減值較低者,平均介於16.99 dB至17.90 dB之間。實驗結果繪置於數值模擬之反射率及衰減值圖,實驗結果多落於上層厚度15 mm之數值解關係線,衰減值均高於厚度10 mm之數值解關係線,誤差在8~17 %之間,未來可據此校正數值與現地超音波實驗誤差。


This research emphasizes on numerical simulation and experiments for ultrasonic behavior on fresh cement-based retrofitting materials. In future, this ultrasonic technique can be used to evaluate the retrofitting conditions on civil infrastructures in field. Commercial numerical software, LS-DYNA with 2-D plane axisymmetric finite element, is applied to analyze ultrasonic behavior on single-layered marble (single-layered model) and marble covering on a material as a substrate (double-layered model). The effects of Young's moduli (150, 100, and 50 GPa), bulk densities (1,750, 2,750, and 3,750 kg/m3), Poisson’s ratios (0.1, 0.2, and 0.3) of marble are numerically discussed in detail. The effects of Young's moduli (40, 30, and 20 GPa), bulk densities (1,000, 2,000, and 3,000 kg/m3), Poisson’s ratios (0.1, 0.2, and 0.3) of substrate and thicknesses (10, 15, and 20 mm) of marble are simulated in detail. The ultrasonic experiments on marble covering on 4 different concretes, mortar, non-shrinkage mortar, reactive powder concrete (RPC), and self-compacting concrete (SCC), are executed to identify the numerical results.
Research results are summarized as the following: On single-layered marble, reflected attenuation loss values range from 5 dB to 9 dB for various material properties. A main attenuation loss is affected by Young’s modulus. On double-layered model, the closer acoustic impedances between these two layers, the lower reflectivity and higher reflected attenuation loss values. Their attenuation loss range falls between 12 dB and 28 dB, 2 to 3 times of values in single-layered model. The attenuation loss values increase from 26.17 dB into 32.84 dB as thickness changes from 10 mm to 20 mm. The relationship between reflectivity and reflection loss is developed for different thicknesses. On ultrasonic experiments in double-layered condition, 10 m thick marble is attached at 4 types of concretes. A higher attenuation loss value is found for RPC base, around 19.98 dB to 22.90 dB. On the other hand, non-shrinkage mortar has a lower attenuation loss value, around 16.99 to 17.90 dB. The experimental results plotted on numerical reflectivity and reflection loss relationship fall along the curve with a thickness of 15 mm of marble. All their attenuation loss values are higher than those from numerical results, 10-mm thick marble. In future, this could be provided as modification for field ultrasonic experimental results.

中文摘要 英文摘要 致謝 總目錄 表目錄 圖目錄 第一章 緒論 1.1 研究背景 1.2 研究目的 1.3 研究內容與流程 第二章 文獻回顧 2.1 非破壞檢測技術之應用 2.2 超音波 2.3 波傳理論與波傳性質 2.3.1 波傳種類 2.3.2 超音波之干涉與繞射 2.4 界面與層狀的影響 2.4.1 超音波在介質上的波傳特性 2.4.2 音阻抗 2.4.3 超音波能量衰減 2.5 耦合劑 2.6 修補補強材料 2.6.1 活性粉混凝土 2.6.2 自充填混凝土 2.6.3 無收縮水泥砂漿 2.7 變異數分析 [50] 2.7.1 雙因子變異數分析 2.7.2 變異數分析步驟 第三章 暫態數值模擬結果分析與討論 3.1 概述 3.2 有限元素分析 3.2.1 有限元素分析之原理 3.2.2 軟體設定程序 3.3 超音波數值模擬 3.3.1 材料參數 3.3.2 元素型態 3.3.3 建立模型 3.3.4 網格劃分 3.3.5 力量函數 3.3.6 載重位置 3.3.7 時間步長 3.3.8 數值模型編號 3.4 數值模擬結果分析 3.4.1 單層板 3.4.2 雙層板 3.4.3 上層厚度對衰減值的效應 3.4.4 變異數分析 第四章 實驗規劃 4.1 實驗內容 4.2 實驗材料 4.3 實驗儀器設備 4.4 實驗變數與項目 4.5 實驗方法與步驟 4.5.1 超音波波速實驗 4.5.2 動態彈性模數與動態剪力模數實驗 4.5.3 抗壓強度實驗 4.5.4 PEO超音波實驗 第五章 實驗結果分析與討論 5.1 材料基本參數與波傳性質 5.1.1 大理石板 5.1.2 水泥砂漿 5.1.3 無收縮水泥砂漿 5.1.4 活性粉混凝土 5.1.5 自充填混凝土 5.2 不同水泥基系材料之超音波衰減特性 5.3 數值模擬與實驗相應證 第六章 結論與建議 6.1 結論 6.1.1 超音波數值模擬-單層版 6.1.2 超音波數值模擬-雙層版 6.1.3 水泥系材料性質發展與超音波衰減之關係 6.2 建議 參考資料

1.Mindess, S. (2004), “Acoustic Emission Methods,” in CRC Handbook on Nondestructive of Concrete, edited by Malhotra, V.M. and Carino, N.J., Boca Raton, FL: CRC Press, pp. 16-1~16-17.
2.Carino, N.J. (2004), “Stress Wave Propagation Methods,” in CRC Handbook on Nondestructive of Concrete, edited by Malhotra, V.M. and Carino, N.J., Boca Raton, FL: CRC Press, pp. 14-1~14-23.
3.Finno, R.J. and Gassman, S.L. (1998), “ Impulse Response Evaluation of Drilled Shafts, Journal of Geotechnical and Geoenvrironmental Engineering, Vol. 124, No. 10, pp. 965~975.
4.Sansalone, M. and Streett, W.B. (1997), Impact-Echo: Nondestructive Evaluation of Concrete and Masonry, Ithaca, NY: Bullbrier Press.
5.Naik, T.R., Malhotra, V.M., and Popovics, J.S. (2004), “The Ultrasonic Pulse Velocity Method,” in CRC Handbook on Nondestructive of Concrete, edited by Malhotra, V.M. and Carino, N.J., Boca Raton, FL: CRC Press, pp. 8-1~8-19.
6.Clemeña, G.G. (2004), “Short-Pulse Radar Methods,” in CRC Handbook on Nondestructive of Concrete, edited by Malhotra, V.M. and Carino, N.J., Boca Raton, FL: CRC Press, pp. 13-1~13-21.
7.Malhotra, V.M., and Sivasundaram, V. (2004), “Resonant Frequency Methods,” in CRC Handbook on Nondestructive of Concrete, edited by Malhotra, V.M. and Carino, N.J., Boca Raton, FL: CRC Press,pp. 7-1~7-21.
8.Lauer, K.R. (2004), “Magnetic/Electrical Methods,” in CRC Handbook on Nondestructive of Concrete, edited by Malhotra, V.M. and Carino, N.J., Boca Raton, FL: CRC Press, pp. 10-1~10-21.
9.Carino, N.J. (2004), “Methods to Evaluate Corrosion of Reinforcement,” in CRC Handbook on Nondestructive of Concrete, edited by Malhotra, V.M. and Carino, N.J., Boca Raton, FL: CRC Press, pp. 11-1~11-24.
10.Malhotra, V.M. (2004), “Surface Hardness Methods,” in CRC Handbook on Nondestructive of Concrete, edited by Malhotra, V.M. and Carino, N.J., Boca Raton, FL: CRC Press, pp. 1-1~1-15.
11.Malhortra, V.M. and Carette, G.G. (2004), “Penetration Resistance Methods,” in CRC Handbook on Nondestructive of Concrete, edited by Malhotra, V.M. and Carino, N.J., Boca Raton, FL: CRC Press, pp. 2-1~2-17.
12.Weil, G.J. (2004), “Infrared Thermographic Techniques,” in CRC Handbook on Nondestructive of Concrete, edited by Malhotra, V.M. and Carino, N.J., Boca Raton, FL: CRC Press, pp. 15-1~15-14.
13.Mitchell, T.M. (2004), “Radioactive/Nuclear Methods,” in CRC Handbook on Nondestructive of Concrete, edited by Malhotra, V.M. and Carino, N.J., Boca Raton, FL: CRC Press, pp. 12-1~12-22.
14.Bray, D.E. and Stanley, R.K. (1993), Nondestructive Evaluation: A Tool for Design, Manufacturing, and Service, New York, NY: McGraw-Hill Book Company.
15.Sullivan-Green, L. (2005), Effect of Crack Width on Carbonation: Implications for Crack Dating, Master Thesis, Northwestern University, Evanston, IL, U.S.A.
16.Hsu, T.T.C. and Slate, F.O. (1963), “Tensile Bond between Aggregate and Cement Paste or Mortar,” Journal of American Concrete Institute Proceedings, Vol. 60, No. 2.
17.Zimbelmann, R., Stuttgart, O., and Germany, F.R. (1985), “A Contribution to the Problem of Cement-Aggregate Bond,” Cement and Concrete Research, Vol. 15, No. 5, pp. 801-808.
18.Bentur, A. (1990), “Microstructure. Interfacial Effects, and Micromechanics of Cementitious Composites,” Advances in Cementitious Materials, Ceramic Transactions, Vol. 16, pp. 523-549.
19.Mehta, P.K. and Monteiro, P.J.M. (1993), Concrete: Structure, Properties, and Materials, 2nd edition, Englewood Cliffs, NJ: Prentice Hall.
20.Baker, C.N., Parikh, G., Briaud, J.L., Drumright, E.E. and Mensah, F. (1993), Drilled Shafts for Bridge Foundations, FHWA Report No. FHWA-RD-92-004, Federal Highway Administration, McLean, VA.
21.Sanalone, M. (1997), “Impact-Echo: The Complete Story,” ACI Structural Journal, Vol. 94, No. 6, pp. 777-786.
22.林宜清,陳真芳(1996),「敲擊回音法在隧道混凝土襯砌結構非破壞試驗之應用」,中國土木水利工程學刊,第8 卷,第2 期,第173-183 頁。
23.Finno, R.J. and Chao, H.-C. (2005), “Guided Waves in Embedded Concrete Piles,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 1, pp. 11-19.
24.Finno, R.J., Chao, H.C., and Lynch, J.J. (2001), Nondestructive Evaluation of In Situ Concrete Piles at the Advanced Waterfront Technology test Sites, Port Hueneme, California, report to the Naval Facilities Engineering Service Center.
25.朱文賓(2002),「超音波掃瞄檢測技術與應用研究」,碩士論文,元智大學機械工程系。
26.Blitz, J. and Simpson, G. (1996), Ultrasonic Methods of Non-Destructive Testing, Chapman and Hall.
27.Naik, T.R., Malhotra, V.M., and Popovics, J.S. (2004), “The Ultrasonic Pulse Velocity Method,” in CRC Handbook on Nondestructive of Concrete, edited by Malhotra, V.M. and Carino, N.J., Boca Raton, FL: CRC Press, pp. 8-1~8-19.
28.Shih, J. and Chen, L. (2002), “Application of Concrete Nondestructive Techniques on Construction Engineering,” The 2nd Taiwan Formosa Enterprises Engineering and Technology Conference, Taipei, Taiwan.
29.張獻元(2002),「層狀混凝土版波傳行為與材料性質之探討」,碩士論文,國立台灣科技大學營建工程系。
30.陳柏存(2008),「以表面波譜法與支持向量機評估高溫損傷混凝土之性質」,博士論文,國立台灣科技大學營建工程系。
31.甘嘉瑋(2009),「超音波檢測技術評估水泥漿體之凝結特性」,碩士論文,國立台灣科技大學營建工程系。
32.蘇志晃(2003),「超音波檢測應用於鋼筋混凝土結構內部成像之研究」,碩士論文,國立中正大學地震研究所。
33.張治泰、邱平(2005),超音波在混凝土質量檢測中的應用,化學工業出版社。
34.Y. Akkaya, T. Voigt, K. V. Subramaniam and S. P. Shah,”Nondestructive measurement of concrete strength gain by an ultrasonic wave reflection method.
35.蘇志晃(2003),「超音波檢測應用於鋼筋混凝土結構內部成像之研究」,碩士論文,國立中正大學地震研究所。
36.Richard, P. and Cheyrezy, M. (1994), “Reactive Powder Concretes with High Ductility and 200-800 MPa Compressive Strength,” ACI Spring Convention, San Francisco.
37.Richard, P. and Cheyrezy, M. (1995), “Composition of Reactive Powder Concretes,” Cement and Concrete Research, Vol. 25, No. 7, pp. 1501-1511.
38.Morin, V., Tenoudji, F.C., Feylessoufi, A., and Richard, P. (2001), “Superplasticizer Effects on Setting and Structuration Mechanisms of Ultrhigh-Performance Concrete,” Cement and Concrete Research, Vol. 31, No. 1, pp. 63-71.
39.Liao, S. and Ma, Y.R. (2005), “Study on the Bending Performance of Reactive Powder Concrete Prestressed Composite Beams,” Journal of Hunan University Natural Sciences, Vol. 32, pp. 57-62.
40.吳崇聖(2007),「含飛灰及爐石粉活性混混凝土性質之研究」,碩士論文,國立台灣科技大學營建工程系。
41.高進驊(2007),「含飛灰及爐石粉活性混混凝土性質及圍束功效之研究」,碩士論文,國立台灣科技大學營建工程系。
42.林建良(2001),「礦物摻料及粒料級配對自充填混凝土新辦性質之影響」,碩士論文,國立台灣科技大學營建工程系。
43.Okamura, H. (1998), “Self-Compacting High-Performance Concrete,” Concrete International, Vol. 19, pp. 50-54.
44.詹穎雯(2000),「自充填混凝土簡介與相關規範」,自充填混凝土產製與施工研討會論文集,台灣營建研究院,臺北,第1-20 頁。
45.柴希文、謝明宏(2000),「自充填混凝土配比設計與施工」,自充填混凝土產製與施工研討會論文集,台灣營建研究院,臺北,第31-41 頁。
46.莊崑斌(2007),「蒸氣養護對不同爐時添加量自充填混凝土熱學性質及工程性質之研究」,碩士論文,國立台灣科技大學營建工程系。
47.西學偉(2009),「自充填輕質混凝土工程性質之研究」,碩士論文,國立台灣科技大學營建工程系。
48.楊建西,「無收縮水泥添加劑之應用」,營建知訊,第182 期,第47-50頁(1998)。
49.「BISO 無收縮灌漿劑產品手冊」,交泰股份有限公司,台北(2002)。
50.林惠玲,陳正倉,「應用統計學」,雙葉書廊有限公司,民國89年一版修訂。
51.John O.Hallquist. (1998) , “LS-DYNA Theoretical Manual”, Livermore Software Technology Corp.

無法下載圖示 全文公開日期 2015/01/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE