簡易檢索 / 詳目顯示

研究生: 高政寓
Cheng-Yu Kao
論文名稱: 嵌有催化劑之金屬有機框架製備及對析氫反應之研究
Preparation of Catalyst Embedded Metal Organic Framework towards Hydrogen Evolution Reaction
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 氏原真樹
Masaki Ujihara
葉旻鑫
Min-Hsin Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 53
中文關鍵詞: 金屬有機骨架析氫反應燃料電池
外文關鍵詞: Metal Organic Framework, ZIF-8, Platinum, Hydrogen Evolution Reaction, Fuel cell
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要討論鉑嵌入金屬有機骨架(MOF)的製備和性質,以評估析氫反應(HER)之效率,並將該催化劑應用於能源開發。氫燃料電池是具潛力的乾淨能源發電系統,但由於觸媒白金昂貴且稀有,造成實際應用的瓶頸。因此使用少量鉑的催化劑去降低成本是目前的方向。
    沸石咪唑酯骨架-8(ZIF-8)是一種金屬有機骨架材料,能夠快速生產具低成本。它可以在高容量結構中嵌入各種活性化合物,並且具有高比表面積和高孔隙率,可以提供活性反應點是一種良好的穩定劑,嵌入觸媒後可以促進析氫反應活性。
    在析氫反應中,鉑是最好的觸媒。然而,由於其稀有性和高成本,我們只能選擇替代電催化劑或減少使用的鉑使用量。在本論文中,我們選擇後者製備一種高活性複合材料,用於析氫反應的電催化劑。
    本工作中使用的三種方法是直接混合方法,一步合成法和雙溶劑法。因此將鉑奈米粒子嵌入MOF(Pt @ ZIF-8)中。評估每種複合材料的析氫反應效率,過電位和塔菲爾斜率。其中雙溶劑法的Pt@ZIF-8的析氫反應催化效果與商業催化劑Pt/C相當。顯著的減少白金使用量達到降低成本,使得乾淨能源發展更容易去實踐。


    This thesis mainly discusses the preparation and properties of platinum to embed in metal-organic framework (MOF) to evaluate the efficiency of hydrogen evolution reaction (HER), and applies this catalyst to energy development. Fuel cell is a potential clean energy generation system, but catalyst platinum is expensive and rare, and makes the actual application bottleneck. Thus using a small amount of platinum can reduce the cost in the current direction.
    Zeolitic Imidazolate Framework-8 (ZIF-8) is one of the metal organic framework materials which are easy to obtain at low cost and can be rapidly produced. It can embed various active compounds in a high-capacity structure, and has a large specific surface area and high porosity. It has high degree of crystallinity and can provide active reaction points. It is a good stabilizer and can promote hydrogen evolution reaction activity, if catalyst was embedded.
    In the hydrogen evolution reaction, platinum is the best catalyst. However, due to its rarity and high cost, we can only choose alternative electrocatalysts or reduce the amount of platinum used. In this thesis we chose the latter to make a highly active composite material for electrocatalysts of hydrogen evolution reaction.
    The three methods used in this work are the direct mixing method, and the one-step synthesis method and the double solvent method. Thus platinum nanoparticles were embedded in the MOF (Pt@ZIF-8). Efficiency of hydrogen evolution reaction, overpotential and Tafel slope of each composite were evaluated. The hydrogen evolution reaction catalytic effect of Pt@ZIF-8 from the double solvent method was equivalent to the commercial catalyst Pt/C. The use of small amount of platinum significantly reduces costs, which make the clean energy development easier in practice.

    Abstract i 摘要 ii Acknowledgements iii List of figure vi List of table viii Abbreviations ix CHAPTER 1 Introduction and Motivation 1 1.1 Introduction 1 1.2 Introduction of ZIF-8 2 1.3 Motivation 3 CHAPTER 2 Experimental Section 4 2.1 Research design 4 2.2 Chemicals 6 2.3 Synthesis of Pt@ZIF-8 7 2.3.1 synthesis of ZIF-8 7 2.3.2 Direct mixing method 8 2.3.3 One-step synthesis method 9 2.3.4 Double solvents synthesis method 10 2.5 Characterization 11 2.5.1 TEM observation 11 2.5.2 Preparation of SEM Observation 11 2.5.3 XRD characterization 11 2.5.4 BET analysis 12 2.5.5 ICP-AES measurement 12 2.5.6 Electrochemical measurement 13 CHAPTER 3 Results and Discussion 15 3.1 TEM images of ZIF-8 and Pt@ZIF-8 15 3.1.1 TEM images of ZIF-8 15 3.1.2 TEM images of Pt@ZIF-8 prepared by direct mixing method 16 3.1.3 TEM images of Pt@ZIF-8 by one-step method at different ratios 17 3.1.4 TEM images of Pt@ZIF-8 by double solvent method at different ratio 19 3.2 SEM images of Pt@ZIF-8 by double solvent method at different ratio 21 3.3 EDX spectrum of Pt@ZIF-8 by double solvent method at different ratio 22 3.4 Electrochemical HER efficiency of Pt@ZIF-8 23 3.4.1 Electrochemical HER efficiency of three Pt@ZIF-8 composites 23 3.4.2 Electrochemical HER efficiency of M2-Pt@ZIF-8 25 3.4.3 Electrochemical HER efficiency of M3-Pt@ZIF-8 26 3.5 Tafel plot for Pt@ZIF-8 composites 27 3.6 EIS spectra of M3-Pt@ZIF-8 composites 30 3.7 XRD characterization of M3-Pt@ZIF-8 31 3.8 ICP-AES characterization of M3-Pt@ZIF-8#0.4 33 3.9 BET characterization of ZIF-8 and M3-Pt@ZIF-8#0.4 35 Conclusion 37 List of Reference 38

    1. Benck, J. D., Hellstern, T. R., Kibsgaard, J., Chakthranont, P. &Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4, 3957–3971 (2014).
    2. Yang, H., Zhang, Y., Hu, F. &Wang, Q. Urchin-like CoP Nanocrystals as Hydrogen Evolution Reaction and Oxygen Reduction Reaction Dual-Electrocatalyst with Superior Stability. Nano Lett. 15, 7616–7620 (2015).
    3. Li, J., Li, F., Guo, S. X., Zhang, J. &Ma, J. PdCu@Pd Nanocube with Pt-like Activity for Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 9, 8151–8160 (2017).
    4. Wang, J. et al. Engineering the Composition and Structure of Bimetallic Au-Cu Alloy Nanoparticles in Carbon Nanofibers: Self-Supported Electrode Materials for Electrocatalytic Water Splitting. ACS Appl. Mater. Interfaces 9, 19756–19765 (2017).
    5. Popczun, E. J., Read, C. G., Roske, C. W., Lewis, N. S. &Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chemie - Int. Ed. 53, 5427–5430 (2014).
    6. Benson, J., Li, M., Wang, S., Wang, P. &Papakonstantinou, P. Electrocatalytic Hydrogen Evolution Reaction on Edges of a Few Layer Molybdenum Disulfide Nanodots. ACS Appl. Mater. Interfaces 7, 14113–14122 (2015).
    7. Pan, Y., Hu, W., Liu, D., Liu, Y. &Liu, C. Carbon nanotubes decorated with nickel phosphide nanoparticles as efficient nanohybrid electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 3, 13087–13094 (2015).
    8. Popczun, E. J. et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267–9270 (2013).
    9. Jiang, N. et al. Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: A case study of crystalline NiS, NiS 2 , and Ni 3 S 2 nanoparticles. Catal. Sci. Technol. 6, 1077–1084 (2016).
    10. Xiao, P. et al. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 7, 2624–2629 (2014).
    11. Liao, L. et al. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 7, 387–392 (2014).
    12. Sarma, P.V., Tiwary, C. S., Radhakrishnan, S., Ajayan, P. M. &Shaijumon, M. M. Oxygen incorporated WS 2 nanoclusters with superior electrocatalytic properties for hydrogen evolution reaction. Nanoscale 10, 9516–9524 (2018).
    13. Zhou, X. et al. Symmetric synergy of hybrid CoS2-WS2 electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 5, 15552–15558 (2017).
    14. Li, Y. et al. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).
    15. Park, K. S. et al. ZIFs - first synthesis. Proc. Natl. Acad. Sci. U. S. A. 103, 10186–10191 (2006).
    16. Yang, J., Ma, Z., Gao, W. &Wei, M. Layered Structural Co-Based MOF with Conductive Network Frames as a New Supercapacitor Electrode. Chem. - A Eur. J. 23, 631–636 (2017).
    17. Liu, Y. et al. Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks. Coord. Chem. Rev. 346, 101–111 (2017).
    18. Otsubo, K., Haraguchi, T. &Kitagawa, H. Nanoscale crystalline architectures of Hofmann-type metal–organic frameworks. Coord. Chem. Rev. 346, 123–138 (2017).
    19. Tanaka, S. et al. Adsorption and Diffusion Phenomena in Crystal Size Engineered ZIF-8 MOF. J. Phys. Chem. C 119, 28430–28439 (2015).
    20. Pan, Y., Liu, Y., Zeng, G., Zhao, L. &Lai, Z. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 47, 2071–2073 (2011).
    21. Ameloot, R. et al. Direct patterning of oriented metal-organic framework crystals via control over crystallization kinetics in clear precursor solutions. Adv. Mater. 22, 2685–2688 (2010).
    22. Huang, X. C., Lin, Y. Y., Zhang, J. P. &Chen, X. M. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chemie - Int. Ed. 45, 1557–1559 (2006).
    23. Wiebcke, M. et al. Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework. Chem. Mater. 21, 1410–1412 (2009).
    24. Lee, Y. R. et al. ZIF-8: A comparison of synthesis methods. Chem. Eng. J. 271, 276–280 (2015).
    25. Rahul Banerjee, Anh Phan, Bo Wang, Carolyn Knobler, H. F. &Michael O’Keeffe, O. M. Y. High-Throughput Synthesis of Zeolitic. Science (80-. ). 319, 939–943 (2008).
    26. Hermes, S. et al. Metall@MOF: Beladung hoch poröser Koordinationspolymergitter durch Metallorganische Chemische Dampfabscheidung. Angew. Chemie 117, 6394–6397 (2005).
    27. Raoof, J. B., Hosseini, S. R., Ojani, R. &Mandegarzad, S. MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction. Energy 90, 1075–1081 (2015).
    28. Devadas, B. &Imae, T. Hydrogen evolution reaction efficiency by low loading of platinum nanoparticles protected by dendrimers on carbon materials. Electrochem. commun. 72, 135–139 (2016).
    29. Cheng, K. L. A New Concept for pH-Potential Calculations. J. Chem. Educ. 76, 1029 (2009).
    30. Furukawa, H., Cordova, K. E., O’Keeffe, M. &Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science (80-. ). 341, (2013).
    31. Guo, H. et al. Combining Coordination Modulation with Acid−Base Adjustment for the control over the size of MOFs.pdf. Chem. Mater. 24, 444–450 (2012).
    32. Shioyama, H. &Xu, Q. Immobilizing Highly Catalytically Active Pt Nanoparticles inside the Pores of Metal−Organic Framework.pdf. 13–16 (2012).
    33. Shinagawa, T., Garcia-Esparza, A. T. &Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 1–21 (2015).
    34. Conway, B. E. &Tilak, B.V. Interfacial processes involving electrocatalytic evolution and.pdf. 47, (2002).
    35. Moon, J. S. et al. The nature of active sites of Ni<inf>2</inf>P electrocatalyst for hydrogen evolution reaction. J. Catal. 326, 92–99 (2015).
    36. Huang, X. et al. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 4, 1444–1448 (2013).
    37. Hou, D. et al. Pt nanoparticles/MoS 2 nanosheets/carbon fibers as efficient catalyst for the hydrogen evolution reaction. Electrochim. Acta 166, 26–31 (2015).
    38. Dong, G. et al. Insight into the electrochemical activation of carbon-based cathodes for hydrogen evolution reaction. J. Mater. Chem. A 3, 13080–13086 (2015).
    39. Pham, K. C. et al. Amorphous Molybdenum Sulfide on Graphene-Carbon Nanotube Hybrids as Highly Active Hydrogen Evolution Reaction Catalysts. ACS Appl. Mater. Interfaces 8, 5961–5971 (2016).
    40. Dai, X. et al. Enhanced hydrogen evolution reaction on few-layer MoS<inf>2</inf> nanosheets-coated functionalized carbon nanotubes. Int. J. Hydrogen Energy 40, 8877–8888 (2015).
    41. Smith, A. J. et al. Molybdenum sulfide supported on crumpled graphene balls for electrocatalytic hydrogen production. Adv. Energy Mater. 4, 1–6 (2014).
    42. Khan, M. et al. Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions. Nano Res. 9, 837–848 (2016).
    43. Fan, X. et al. Carbon-Based Composite as an Efficient and Stable Metal-Free Electrocatalyst. Adv. Funct. Mater. 26, 3621–3629 (2016).
    44. Zhao, Y. et al. Nanostructured molybdenum phosphide/N,P dual-doped carbon nanotube composite as electrocatalysts for hydrogen evolution. RSC Adv. 6, 7370–7377 (2016).
    45. Schejn, A. et al. Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations. CrystEngComm 16, 4493–4500 (2014).
    46. Venu, R., Ramulu, T. S., Anandakumar, S., Rani, V. S. &Kim, C. G. Bio-directed synthesis of platinum nanoparticles using aqueous honey solutions and their catalytic applications. Colloids Surfaces A Physicochem. Eng. Asp. 384, 733–738 (2011).
    47. Kumar, M. N., Govindh, B. &Annapurna, N. Green synthesis and characterization of platinum nanoparticles using Sapindus mukorossi Gaertn. fruit pericarp. Asian J. Chem. 29, 2541–2544 (2017).
    48. Morabito, J.V. et al. Molecular encapsulation beyond the aperture size limit through dissociative linker exchange in metal-organic framework crystals. J. Am. Chem. Soc. 136, 12540–12543 (2014).
    49. Meilikhov, M. et al. Metals@MOFs - Loading MOFs with metal nanoparticles for hybrid functions. Eur. J. Inorg. Chem. 3701–3714 (2010). doi:10.1002/ejic.201000473

    無法下載圖示 全文公開日期 2024/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE